当前位置: X-MOL 学术Chin. J. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-supporting NiFe LDH-MoSx integrated electrode for highly efficient water splitting at the industrial electrolysis conditions
Chinese Journal of Catalysis ( IF 15.7 ) Pub Date : 2021-06-22 , DOI: 10.1016/s1872-2067(21)63796-8
Han Zhang , Guoqiang Shen , Xinying Liu , Bo Ning , Chengxiang Shi , Lun Pan , Xiangwen Zhang , Zhen-Feng Huang , Ji-Jun Zou

Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production. Herein, we report the self-supporting NiFe LDH-MoSx integrated electrode for water oxidation under normal alkaline test condition (1 M KOH at 25 °C) and simulated industrial electrolysis conditions (5 M KOH at 65 °C). Such optimized electrode exhibits excellent oxygen evolution reaction (OER) performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm−2 under normal alkaline test condition. Notably, only overpotential of 156 and 201 mV were required to achieve the current density of 100 and 400 mA·cm−2 under simulated industrial electrolysis conditions. No significant degradations were observed after long-term durability tests for both conditions. When using in two-electrode system, the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm−2 for the overall water splitting test (NiFe LDH-MoSx/INF || 20% Pt/C). Additionally, the operational voltage of employing NiFe LDH-MoSx/INF as both cathode and anode merely require 1.52 V at 50 mA·cm−2 at simulated industrial electrolysis conditions. Notably, a membrane electrode assembly (MEA) for anion exchange membrane water electrolysis (AEMWEs) using NiFe LDH-MoSx/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8% at current density of 400 mA·cm−2 in 1 M KOH at 60 °C. Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH, but also regulated its electronic configurations and atomic composition, leading to the excellent activity. The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.



中文翻译:

自支撑 NiFe LDH-MoS x集成电极,用于在工业电解条件下高效分解水

在工业电解条件下开发有效且实用的电催化剂对于可再生氢生产至关重要。在此,我们报告了在正常碱性测试条件(25 °C 下 1 M KOH)和模拟工业电解条件(65 °C 下 5 M KOH)下用于水氧化的自支撑 NiFe LDH-MoS x集成电极。这种优化的电极表现出优异的析氧反应(OER)性能,在正常碱性测试条件下,在电流密度为 100 和 400 mA·cm -2 时的过电位分别为 195 和 290 mV 。值得注意的是,实现 100 和 400 mA·cm -2的电流密度只需要 156 和 201 mV 的过电位在模拟工业电解条件下。在两种条件下的长期耐久性测试后,均未观察到显着退化。在双电极系统中使用时,需要 1.44 和 1.72 V 的工作电压才能实现 10 和 100 mA·cm -2的电流密度,用于整体水分解测试 (NiFe LDH-MoS x /INF || 20%铂/碳)。此外,在模拟工业电解条件下,采用NiFe LDH-MoS x /INF 作为阴极和阳极的工作电压在50 mA·cm -2下仅需要1.52 V。值得注意的是,使用 NiFe LDH-MoS x 的用于阴离子交换膜水电解 (AEMWE) 的膜电极组件 (MEA)/INF 作为阳极催化剂,在 60 °C 和 1 M KOH 中,电流密度为 400 mA·cm -2 时,其能量转换效率为 71.8% 。进一步的实验结果表明,硫化基底不仅提高了 NiFe LDH 的导电性,而且还调节了其电子构型和原子组成,从而获得了优异的活性。易于获得且具有成本效益的集成电极有望满足工业水电解的大规模应用。

更新日期:2021-06-23
down
wechat
bug