当前位置: X-MOL 学术Intel. Serv. Robotics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discrete event-driven control of an active orthosis regulated by electromyographic signals for Canis lupus familiaris
Intelligent Service Robotics ( IF 2.3 ) Pub Date : 2021-06-22 , DOI: 10.1007/s11370-021-00371-w
M. Sanchez , A. Ruız , D. Cruz-Ortiz , I. Salgado , M. Ballesteros , I. Chairez

This study introduces the design of an asynchronous event-driven adaptive robust control that regulates a mobile limb orthosis position for the hind legs of a Canis lupus familiaris (CLF). The application of a suitable stability analysis based on a controlled Lyapunov function results in the laws to adjust the adaptive gains of a proportional integral derivative controller (PID). The controller succeeded in compensating external bounded perturbations and non-modeled uncertainties in the active orthosis device. This compensation forces the tracking between the current positions and some reference trajectories obtained by a biomechanical gait cycle analysis of the CLF. The controller starts with the event triggered from the power of the electromyography signal from the frontal legs. If the signal power is higher than a predefined threshold, the movement of the orthosis will initiate. Electromyographic signals were acquired offline and injected into a virtualized orthosis model to test the event-driven control design. A set of numerical simulations confirmed a better performance of tracking reference trajectories and the effect of the event-driven controller on the orthosis operation. The experimental validation of the proposed output feedback controller on the designed orthosis seems to justify a potential automatized rehabilitation therapy based on the proposed electromyography-driven strategy.



中文翻译:

犬狼疮的肌电信号调控主动矫形器的离散事件驱动控制

本研究介绍了一种异步事件驱动的自适应鲁棒控制的设计,该控制可调节Canis lupusfamiliaris后腿的移动肢体矫形器位置(CLF)。基于受控李雅普诺夫函数的适当稳定性分析的应用导致调整比例积分微分控制器 (PID) 的自适应增益的规律。控制器成功地补偿了主动矫形器中的外部有界扰动和非建模不确定性。这种补偿强制在当前位置和通过 CLF 的生物力学步态周期分析获得的一些参考轨迹之间进行跟踪。控制器从由来自前腿的肌电信号的功率触发的事件开始。如果信号功率高于预定义的阈值,矫形器的运动将开始。离线获取肌电信号并将其注入虚拟矫形器模型以测试事件驱动控制设计。一组数值模拟证实了跟踪参考轨迹的更好性能以及事件驱动控制器对矫形器操作的影响。所提出的输出反馈控制器在设计的矫形器上的实验验证似乎证明了基于所提出的肌电图驱动策略的潜在自动化康复治疗的合理性。

更新日期:2021-06-23
down
wechat
bug