当前位置: X-MOL 学术Adv. Civ. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical Behavior of Buried Pipelines Subjected to Faults
Advances in Civil Engineering ( IF 1.5 ) Pub Date : 2021-06-23 , DOI: 10.1155/2021/9984519
Xiaolong Wei 1 , Wenshuai Jiao 2 , Xi Zeng 3 , Danfu Zhang 4 , Guofeng Du 2
Affiliation  

The length of buried pipelines usually extends thousands of meters or more in engineering, and it is difficult to carry out full-scale tests in the laboratory. Therefore, considering the seriousness of pipeline damage and the difficulty of operating tests and other test limitations, it is necessary to develop a reasonable method to simplify the length of the model for a practical lab test. In this research, an equivalent spring model was established to simulate the small deformation section of the pipeline far away from the fault and the effect of fault displacements, pipeline diameters, wall thicknesses, buried depths, soil materials, and spring constraints on the mechanical properties of pipelines was analyzed. Based on the finite element model using ABAQUS software, the results of the shell model with fixed boundary at both ends were compared; in addition, the dynamic effect of pipelines was investigated. The results show that the two-end spring device can better control the size of the test model and enhance the reliability of the test results. The vibration response of the pipeline mainly depends on the inconsistent movement of soil at both ends of the fault. The analysis results show that choosing a larger pipeline diameter, smaller buried depth, noncohesive backfill soil, and spring with a smaller elastic coefficient is beneficial to reduce pipeline strain and resist pipeline deformation. A simplified formula of the axial compressive strain of buried pipelines across oblique-slip fault is obtained.

中文翻译:

埋地管道发生故障时的力学行为

工程中埋地管道的长度通常延伸数千米以上,很难在实验室进行全尺寸试验。因此,考虑到管道损坏的严重性和操作试验的难度等试验局限性,有必要制定合理的方法来简化模型长度以进行实际实验室试验。本研究建立等效弹簧模型,模拟远离断层的管道小变形段,以及断层位移、管道直径、壁厚、埋深、土壤材料、弹簧约束对力学性能的影响。对管道进行了分析。基于ABAQUS软件建立的有限元模型,比较了两端固定边界壳模型的结果;此外,还研究了管道的动态效应。结果表明,两端弹簧装置能较好地控制试验模型的尺寸,增强试验结果的可靠性。管道的振动响应主要取决于断层两端土壤运动的不一致。分析结果表明,选择较大的管道​​直径、较小的埋深、非粘性回填土和弹性系数较小的弹簧有利于减小管道应变和抵抗管道变形。得到了斜滑断层埋地管道轴向压应变的简化公式。结果表明,两端弹簧装置能较好地控制试验模型的尺寸,增强试验结果的可靠性。管道的振动响应主要取决于断层两端土壤运动的不一致。分析结果表明,选择较大的管道​​直径、较小的埋深、非粘性回填土和弹性系数较小的弹簧有利于减小管道应变和抵抗管道变形。得到了斜滑断层埋地管道轴向压应变的简化公式。结果表明,两端弹簧装置能较好地控制试验模型的尺寸,增强试验结果的可靠性。管道的振动响应主要取决于断层两端土壤运动的不一致。分析结果表明,选择较大的管道​​直径、较小的埋深、非粘性回填土和弹性系数较小的弹簧有利于减小管道应变和抵抗管道变形。得到了斜滑断层埋地管道轴向压应变的简化公式。弹性系数较小的弹簧有利于减小管道应变和抵抗管道变形。得到了斜滑断层埋地管道轴向压应变的简化公式。弹性系数较小的弹簧有利于减小管道应变和抵抗管道变形。得到了斜滑断层埋地管道轴向压应变的简化公式。
更新日期:2021-06-23
down
wechat
bug