当前位置: X-MOL 学术Mine Water Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Environmental Stability of Schwertmannite: A Review
Mine Water and the Environment ( IF 2.1 ) Pub Date : 2020-11-25 , DOI: 10.1007/s10230-020-00734-2
Susanta Paikaray

Schwertmannite is sensitive to changes in geochemical, thermal, and microbial conditions. Changes in aqueous pH beyond its stability, i.e. pH 2.5–4.5, triggers its transformation to jarosite or goethite in highly acidic environments (pH ≤ 2.5), depending on the availability of jarosite-directing cations (Na+, NH4+, K+, etc.), while goethite is the common stable end product at pH > 7.5. Schwertmannite with degraded morphology can stably exist for years in oxic intermediate pH environments (pH 5.5–6.5), but the presence of trace amounts of Fe(II)aq yields goethite/lepidocrocite within a few hours, especially at pH ≥ 6.5. Hematite is the sole end product at ≥ 600 °C dry heating, with goethite and ferrihydrite as intermediate phases. Siderite, maghemite, and mackinawite form in anoxic microbial conditions due to dissimilatory reduction of Fe(III) and SO42− to Fe(II) and HS−, while orpiment forms from As(V)-rich schwertmannites. Sorbed contaminants enhance schwertmannite stability by restricting Fe(II)–Fe(III) electron transfer and microbial degradation by occupying surface sites. Although Fe(III) and sorbed ion mobilization typically has negligible effects on schwertmannite transformation, complete schwertmannite-SO4 release is likely in extreme conditions, and in microbial Fe(II)aq-rich media. Dissolution–reprecipitation and solid state transformation mechanisms broadly govern schwertmannite transformation.

中文翻译:

Schwertmannite 的环境稳定性:综述

Schwertmannite 对地球化学、热和微生物条件的变化很敏感。水溶液 pH 值的变化超出其稳定性,即 pH 值 2.5–4.5,会在高酸性环境(pH ≤ 2.5)中触发其转化为黄钾铁矾或针铁矿,这取决于黄钾铁矾导向阳离子(Na+、NH4+、K+ 等)的可用性。 ,而针铁矿是 pH > 7.5 时常见的稳定最终产品。具有退化形态的施威曼石可以在含氧中等 pH 值环境(pH 5.5-6.5)中稳定存在数年,但痕量 Fe(II)aq 的存在会在几小时内产生针铁矿/纤铁矿,尤其是在 pH ≥ 6.5 时。赤铁矿是 ≥ 600 °C 干燥加热的唯一最终产品,针铁矿和水铁矿作为中间相。菱铁矿、磁赤铁矿、由于 Fe(III) 和 SO42− 异化还原为 Fe(II) 和 HS−,而在缺氧微生物条件下形成和 mackinawite,而富含 As(V) 的施维特曼石则形成雌蕊。吸附的污染物通过占据表面位点来限制 Fe(II)-Fe(III) 电子转移和微生物降解,从而增强施维特曼石的稳定性。尽管 Fe(III) 和吸附离子迁移通常对施维特曼石转化的影响可以忽略不计,但在极端条件下和微生物富 Fe(II)aq 介质中,施维特曼石-SO4 可能完全释放。溶解-再沉淀和固态转变机制广泛地控制着施威特曼转变。吸附的污染物通过占据表面位点来限制 Fe(II)-Fe(III) 电子转移和微生物降解,从而增强施维特曼石的稳定性。尽管 Fe(III) 和吸附离子迁移通常对施维特曼石转化的影响可以忽略不计,但在极端条件下和微生物富 Fe(II)aq 介质中,施维特曼石-SO4 可能完全释放。溶解-再沉淀和固态转变机制广泛地控制着施威特曼转变。吸附的污染物通过占据表面位点来限制 Fe(II)-Fe(III) 电子转移和微生物降解,从而增强施维特曼石的稳定性。尽管 Fe(III) 和吸附离子迁移通常对施维特曼石转化的影响可以忽略不计,但在极端条件下和微生物富 Fe(II)aq 介质中,施维特曼石-SO4 可能完全释放。溶解-再沉淀和固态转变机制广泛地控制着施威特曼转变。
更新日期:2020-11-25
down
wechat
bug