当前位置: X-MOL 学术Wear › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessment of flow aggressiveness and erosion damage topography for different gap widths in ultrasonic cavitation testing
Wear ( IF 5.3 ) Pub Date : 2021-06-22 , DOI: 10.1016/j.wear.2021.203989
Felix Schreiner , Stefanie Hanke , Romuald Skoda

Incubation time and erosion rate of C15 steel (SAE 1016) are measured in a cavitation test-rig utilizing an ultrasonic horn. The gap width (separation distance) between horn tip and stationary sample is varied and effects on material damage are studied. Cavitation erosion shows a local maximum for a gap width of 0.5 mm at the stationary specimen, while it continuously rises on the horn tip with rising gap width. A characteristic erosion pattern develops at horn tip and stationary specimen. By a-posteriori surface erosion topography measurements, radial erosion depth profiles are evaluated. Together with scanning electron microscopy investigations, they provide information on the spatial distribution of the flow aggressiveness and on wear mechanisms. By means of computational fluid dynamics (CFD) results, the local surface erosion topography is associated to harmonic and subharmonic collapse events within the gap. Pressure measurements have been performed by piezoelectric polyvinylidene fluoride (PVDF) sensors, mounted in central as well as eccentric position on the specimen surface. A local mean of the erosion depth profile is evaluated on the surface portion that corresponds to the PVDF sensor locations. By temporally high-resolved pressure data, a cumulative force load is evaluated. For larger gap width, a good correlation of cumulative force load with the inverse incubation time, erosion rate, as well as mean erosion depth is obtained, while for the smallest gap width of 0.3 mm, the correlation deteriorates.



中文翻译:

超声空化试验中不同间隙宽度的流动侵蚀性和侵蚀损伤形貌评估

C15 钢 (SAE 1016) 的孵育时间和侵蚀速率在空化试验台中使用超声波喇叭进行测量。喇叭尖端和固定样品之间的间隙宽度(分离距离)是变化的,并研究了对材料损坏的影响。空化侵蚀在静止样品处显示出 0.5 mm 间隙宽度的局部最大值,而它随着间隙宽度的增加而在喇叭尖端连续上升。在喇叭尖端和静止标本处形成特征性侵蚀模式。通过后验表面侵蚀地形测量,评估径向侵蚀深度剖面。连同扫描电子显微镜研究,它们提供了关于流动侵蚀性和磨损机制的空间分布的信息。通过计算流体动力学 (CFD) 结果,局部表面侵蚀地形与间隙内的谐波和次谐波坍塌事件有关。压力测量由压电聚偏二氟乙烯 (PVDF) 传感器进行,安装在样品表面的中心和偏心位置。在对应于 PVDF 传感器位置的表面部分上评估侵蚀深度剖面的局部平均值。通过时间上高分辨率的压力数据,可以评估累积力负载。对于较大的间隙宽度,累积力载荷与逆孵化时间、侵蚀速率以及平均侵蚀深度之间具有良好的相关性,而对于 0.3 毫米的最小间隙宽度,相关性恶化。压力测量由压电聚偏二氟乙烯 (PVDF) 传感器进行,安装在样品表面的中心和偏心位置。在对应于 PVDF 传感器位置的表面部分上评估侵蚀深度剖面的局部平均值。通过时间上高分辨率的压力数据,可以评估累积力负载。对于较大的间隙宽度,累积力载荷与逆孵化时间、侵蚀速率以及平均侵蚀深度之间具有良好的相关性,而对于 0.3 毫米的最小间隙宽度,相关性恶化。压力测量由压电聚偏二氟乙烯 (PVDF) 传感器进行,安装在样品表面的中心和偏心位置。在对应于 PVDF 传感器位置的表面部分上评估侵蚀深度剖面的局部平均值。通过时间上高分辨率的压力数据,可以评估累积力负载。对于较大的间隙宽度,累积力载荷与逆孵化时间、侵蚀速率以及平均侵蚀深度之间具有良好的相关性,而对于 0.3 毫米的最小间隙宽度,相关性恶化。通过时间上高分辨率的压力数据,可以评估累积力负载。对于较大的间隙宽度,累积力载荷与逆孵化时间、侵蚀速率以及平均侵蚀深度之间具有良好的相关性,而对于 0.3 毫米的最小间隙宽度,相关性恶化。通过时间上高分辨率的压力数据,可以评估累积力负载。对于较大的间隙宽度,累积力载荷与逆孵化时间、侵蚀速率以及平均侵蚀深度之间具有良好的相关性,而对于 0.3 毫米的最小间隙宽度,相关性恶化。

更新日期:2021-07-16
down
wechat
bug