当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous Suspension Control and Energy Harvesting through Novel Design and Control of a New Nonlinear Energy Harvesting Shock Absorber
arXiv - CS - Systems and Control Pub Date : 2021-06-19 , DOI: arxiv-2106.10540
Mohammad R. Hajidavalloo, Joel Cosner, Zhaojian Li, Wei-Che Tai, Ziyou Song

Simultaneous vibration control and energy harvesting of vehicle suspensions have attracted significant research attention over the past decades. However, existing energy harvesting shock absorbers (EHSAs) are mainly designed based on the principle of linear resonance, thereby compromising suspension performance for high-efficiency energy harvesting and being only responsive to narrow bandwidth vibrations. In this paper, we propose a new EHSA design -- inerter pendulum vibration absorber (IPVA) -- that integrates an electromagnetic rotary EHSA with a nonlinear pendulum vibration absorber. We show that this design simultaneously improves ride comfort and energy harvesting efficiency by exploiting the nonlinear effects of pendulum inertia. To further improve the performance, we develop a novel stochastic linearization model predictive control (SL-MPC) approach in which we employ stochastic linearization to approximate the nonlinear dynamics of EHSA that has superior accuracy compared to standard linearization. In particular, we develop a new stochastic linearization method with guaranteed stabilizability, which is a prerequisite for control designs. This leads to an MPC problem that is much more computationally efficient than the nonlinear MPC counterpart with no major performance degradation. Extensive simulations are performed to show the superiority of the proposed new nonlinear EHSA and to demonstrate the efficacy of the proposed SL-MPC.

中文翻译:

通过新型非线性能量收集减震器的新颖设计和控制同时悬挂控制和能量收集

在过去的几十年中,车辆悬架的同步振动控制和能量收集引起了广泛的研究关注。然而,现有的能量收集减震器 (EHSA) 主要基于线性共振原理设计,从而影响了高效能量收集的悬架性能,并且仅对窄带宽振动做出响应。在本文中,我们提出了一种新的 EHSA 设计——惯性摆式减振器 (IPVA)——它将电磁旋转 EHSA 与非线性摆式减振器集成在一起。我们表明,该设计通过利用摆惯性的非线性效应同时提高了乘坐舒适性和能量收集效率。为了进一步提高性能,我们开发了一种新颖的随机线性化模型预测控制 (SL-MPC) 方法,在该方法中,我们采用随机线性化来近似 EHSA 的非线性动力学,与标准线性化相比,该方法具有更高的准确性。特别是,我们开发了一种具有保证稳定性的新随机线性化方法,这是控制设计的先决条件。这导致 MPC 问题的计算效率比非线性 MPC 对应物高得多,而没有显着的性能下降。进行了广泛的模拟以显示所提出的新非线性 EHSA 的优越性,并证明所提出的 SL-MPC 的功效。我们开发了一种新的具有保证稳定性的随机线性化方法,这是控制设计的先决条件。这导致 MPC 问题的计算效率比非线性 MPC 对应物高得多,而没有显着的性能下降。进行了广泛的模拟以显示所提出的新非线性 EHSA 的优越性,并证明所提出的 SL-MPC 的功效。我们开发了一种新的具有保证稳定性的随机线性化方法,这是控制设计的先决条件。这导致 MPC 问题的计算效率比非线性 MPC 对应物高得多,而没有显着的性能下降。进行了广泛的模拟以显示所提出的新非线性 EHSA 的优越性,并证明所提出的 SL-MPC 的功效。
更新日期:2021-06-25
down
wechat
bug