当前位置: X-MOL 学术ACM Trans. Graph. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of Personalized Anatomy Using Plastic Strains
ACM Transactions on Graphics  ( IF 6.2 ) Pub Date : 2021-06-21 , DOI: 10.1145/3443703
Bohan Wang 1 , George Matcuk 1 , Jernej Barbič 1
Affiliation  

We present a method for modeling solid objects undergoing large spatially varying and/or anisotropic strains, and use it to reconstruct human anatomy from medical images. Our novel shape deformation method uses plastic strains and the finite element method to successfully model shapes undergoing large and/or anisotropic strains, specified by sparse point constraints on the boundary of the object. We extensively compare our method to standard second-order shape deformation methods, variational methods, and surface-based methods, and demonstrate that our method avoids the spikiness, wiggliness, and other artifacts of previous methods. We demonstrate how to perform such shape deformation both for attached and un-attached (“free flying”) objects, using a novel method to solve linear systems with singular matrices with a known nullspace. Although our method is applicable to general large-strain shape deformation modeling, we use it to create personalized 3D triangle and volumetric meshes of human organs, based on magnetic resonance imaging or computed tomography scans. Given a medically accurate anatomy template of a generic individual, we optimize the geometry of the organ to match the magnetic resonance imaging or computed tomography scan of a specific individual. Our examples include human hand muscles, a liver, a hip bone, and a gluteus medius muscle (“hip abductor”).

中文翻译:

使用塑料应变进行个性化解剖建模

我们提出了一种对承受较大空间变化和/或各向异性应变的固体对象进行建模的方法,并使用它从医学图像中重建人体解剖结构。我们新颖的形状变形方法使用塑性应变和有限元方法成功地模拟了承受大和/或各向异性应变的形状,由对象边界上的稀疏点约束指定。我们将我们的方法与标准的二阶形状变形方法、变分方法和基于表面的方法进行了广泛的比较,并证明我们的方法避免了先前方法的尖峰、摆动和其他伪影。我们演示了如何使用一种新颖的方法来解决具有已知零空间的奇异矩阵的线性系统,从而对附加和未附加(“自由飞行”)对象执行这种形状变形。虽然我们的方法适用于一般的大应变形状变形建模,但我们使用它来创建基于磁共振成像或计算机断层扫描的人体器官的个性化 3D 三角形和体积网格。给定一般个体的医学上准确的解剖模板,我们优化器官的几何形状以匹配特定个体的磁共振成像或计算机断层扫描。我们的例子包括人类手部肌肉、肝脏、髋骨和臀中肌(“髋外展肌”)。我们优化器官的几何形状以匹配特定个体的磁共振成像或计算机断层扫描。我们的例子包括人类手部肌肉、肝脏、髋骨和臀中肌(“髋外展肌”)。我们优化器官的几何形状以匹配特定个体的磁共振成像或计算机断层扫描。我们的例子包括人类手部肌肉、肝脏、髋骨和臀中肌(“髋外展肌”)。
更新日期:2021-06-21
down
wechat
bug