当前位置: X-MOL 学术J. Sound Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-order X-FEM for the simulation of sound absorbing poro-elastic materials with coupling interfaces
Journal of Sound and Vibration ( IF 4.3 ) Pub Date : 2021-06-21 , DOI: 10.1016/j.jsv.2021.116262
Shaoqi Wu , Olivier Dazel , Gwénaël Gabard , Grégory Legrain

In this paper, the acoustic field with the presence of poro-elastic materials is simulated by the eXtended Finite Element Method (X-FEM). Problems involving interfaces between different media are our main focus. The proposed method allows interfaces to be embedded in the finite elements, easing significantly the discretization, especially when the geometry of the interface is complex. The gradient discontinuity at the interface is handled through the ridge enrichment function. The strategies of spatial discretization for two different types of coupling interface are provided. A high-order approximation is used to improve the rate of convergence for the Biot mixed formulation (us,p) and to eliminate the pollution effect at high frequencies. The verification of the method is performed with two benchmarks. Convergences of the solutions exhibit the capability and the accuracy of the present method under different conditions: coupling types, geometric complexity and a wide range of frequency. The applicability and advantage of the method in practical situations are demonstrated by a car cavity problem where part of the geometry is modified without re-meshing. This paper demonstrates that high-order X-FEM is an efficient computational approach for analysing sound-absorbing poro-elastic materials involving complex geometries.



中文翻译:

用于模拟具有耦合界面的吸声多孔弹性材料的高阶 X-FEM

在本文中,存在多孔弹性材料的声场通过扩展有限元方法 (X-FEM) 进行模拟。涉及不同媒体之间接口的问题是我们的主要关注点。所提出的方法允许将界面嵌入到有限元中,大大简化了离散化,特别是当界面的几何形状复杂时。界面处的梯度不连续性通过脊富集功能处理。提供了两种不同类型耦合界面的空间离散化策略。使用高阶近似来提高 Biot 混合公式的收敛速度(,)并消除高频污染效应。该方法的验证通过两个基准进行。解的收敛性展示了本方法在不同条件下的能力和准确性:耦合类型、几何复杂性和广泛的频率范围。该方法在实际情况下的适用性和优势通过汽车腔体问题得到了证明,该问题在不重新划分网格的情况下修改了部分几何形状。本文证明了高阶 X-FEM 是一种有效的计算方法,用于分析涉及复杂几何形状的吸音多孔弹性材料。

更新日期:2021-06-30
down
wechat
bug