当前位置: X-MOL 学术Phys. Rev. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Universal properties of penetrative turbulent Rayleigh-Bénard convection
Physical Review Fluids ( IF 2.5 ) Pub Date : 2021-06-21 , DOI: 10.1103/physrevfluids.6.063502
Qi Wang , Philipp Reiter , Detlef Lohse , Olga Shishkina

Penetrative turbulence, which occurs in a convectively unstable fluid layer and penetrates into an adjacent, originally stably stratified layer, is numerically and theoretically analyzed. As example we pick the canonical Rayleigh-Bénard geometry, but now with the bottom plate temperature Tb>4C, the top plate temperature Tt4C, and the density maximum around Tm4C in between, resulting in penetrative turbulence. Next to the Rayleigh number Ra, the crucial new control parameter as compared to standard Rayleigh-Bénard convection is the density inversion parameter θm(TmTt)/(TbTt). The crucial response parameters are the relative mean midheight temperature θc and the overall heat transfer (i.e., the Nusselt number Nu). We numerically show (for Ra up to 1010) and theoretically derive that θc(θm) and Nu(θm)/Nu(0) are universally(i.e., independently of Ra) determined only by the density inversion parameter θm and succeed to derive these universal dependences. In particular, θc(θm)=(1+θm2)/2, which holds for θm below a Ra-dependent critical value, beyond which θc(θm) sharply decreases and drops down to θc=1/2 at θm=θm,c. This critical density inversion parameter θm,c can be precisely predicted by a linear stability analysis. Finally, we numerically identify and discuss rare transitions between different turbulent flow states for large θm.

中文翻译:

穿透湍流瑞利-贝纳对流的普遍性质

渗透湍流发生在对流不稳定的流体层中,并渗透到相邻的、最初稳定分层的层中,进行了数值和理论分析。作为示例,我们选择规范的 Rayleigh-Bénard 几何,但现在使用底板温度>4C, 顶板温度 4C, 以及周围的密度最大值 4C在两者之间,导致穿透湍流。除了瑞利数 Ra,与标准瑞利-贝纳德对流相比,关键的新控制参数是密度反演参数θ(-)/(-). 关键的响应参数是相对平均中高温度θC和总传热(即努塞尔数 Nu)。我们用数字表示(对于 Ra 高达1010) 并从理论上推导出 θC(θ)(θ)/(0)普遍的(即,独立于) 仅由密度反演参数决定 θ并成功推导出这些普遍依赖。特别是,θC(θ)=(1+θ2)/2,这适用于 θ 低于 -依赖临界值,超过该临界值 θC(θ) 急剧下降并下降到 θC=1/2θ=θ,C. 这个临界密度反演参数θ,C可以通过线性稳定性分析精确预测。最后,我们数值识别和讨论了不同湍流状态之间的罕见转变θ.
更新日期:2021-06-21
down
wechat
bug