当前位置: X-MOL 学术Phys. Rev. E › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Condensation transition in the late-time position of a run-and-tumble particle
Physical Review E ( IF 2.4 ) Pub Date : 2021-06-21 , DOI: 10.1103/physreve.103.062134
Francesco Mori 1 , Pierre Le Doussal 2 , Satya N Majumdar 1 , Grégory Schehr 3
Affiliation  

We study the position distribution P(R,N) of a run-and-tumble particle (RTP) in arbitrary dimension d, after N runs. We assume that the constant speed v>0 of the particle during each running phase is independently drawn from a probability distribution W(v) and that the direction of the particle is chosen isotropically after each tumbling. The position distribution is clearly isotropic, P(R,N)P(R,N) where R=|R|. We show that, under certain conditions on d and W(v) and for large N, a condensation transition occurs at some critical value of R=RcO(N) located in the large-deviation regime of P(R,N). For R<Rc (subcritical fluid phase), all runs are roughly of the same size in a typical trajectory. In contrast, an RTP trajectory with R>Rc is typically dominated by a “condensate,” i.e., a large single run that subsumes a finite fraction of the total displacement (supercritical condensed phase). Focusing on the family of speed distributions W(v)=α(1v/v0)α1/v0, parametrized by α>0, we show that, for large N, P(R,N)exp[Nψd,α(R/N)], and we compute exactly the rate function ψd,α(z) for any d and α. We show that the transition manifests itself as a singularity of this rate function at R=Rc and that its order depends continuously on d and α. We also compute the distribution of the condensate size for R>Rc. Finally, we study the model when the total duration T of the RTP, instead of the total number of runs, is fixed. Our analytical predictions are confirmed by numerical simulations, performed using a constrained Markov chain Monte Carlo technique, with precision 10100.

中文翻译:

滚动粒子后期位置的凝聚转变

我们研究位置分布 (电阻,N) 任意维度的滚动粒子 (RTP) d, 后 N运行。我们假设匀速v>0 粒子在每个运行阶段的概率分布独立绘制 (v)并且在每次翻滚后粒子的方向都是各向同性的。位置分布明显各向同性,(电阻,N)(电阻,N) 在哪里 电阻=|电阻|. 我们证明,在特定条件下d(v) 而对于大 N,凝结转变发生在某个临界值 电阻=电阻C(N) 位于大偏差范围内 (电阻,N). 为了电阻<电阻C(亚临界流体相),所有运行在典型轨迹中的大小大致相同。相比之下,RTP 轨迹具有电阻>电阻C通常由“凝析油”支配,即包含有限部分总排量(超临界凝相)的大型单次运行。专注于速度分布系列(v)=α(1-v/v0)α-1/v0, 参数化为 α>0,我们证明,对于大 N, (电阻,N)经验值[-Nψd,α(电阻/N)],我们精确地计算速率函数 ψd,α(z) 对于任何 dα. 我们表明,转变表现为该速率函数的奇点电阻=电阻C 并且它的顺序持续依赖于 dα. 我们还计算了冷凝水尺寸的分布电阻>电阻C. 最后,我们研究模型,当总持续时间RTP 的数量,而不是运行的总数,是固定的。我们的分析预测得到了数值模拟的证实,使用受约束的马尔可夫链蒙特卡洛技术执行,精确10-100.
更新日期:2021-06-21
down
wechat
bug