当前位置: X-MOL 学术Bull. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterization and optimization of influence of MoS2 hybridization on tribological behaviours of Mg–B4C composites
Bulletin of Materials Science ( IF 1.9 ) Pub Date : 2021-06-21 , DOI: 10.1007/s12034-021-02423-4
C Kailasanathan , P R Rajkumar , N Rajini , G D Sivakumar , T Ramesh , Sikiru Oluwarotimi Ismail , Faruq Mohammad , Hamad A Al-Lohedan

Aerospace and automobile industries are facing challenges in developing lightweight materials with high corrosion and wear resistance. The magnesium (Mg) alloys are superior to their monolithics, as they have maximum strength-to-weight ratio. These challenges can be solved with application of Mg-based hybrid composites. Therefore, this study investigated the hybridizing effect of molybdenum disulphide (MoS2) reinforcement on tribological performance of magnesium–boron carbide (Mg–B4C) hybrid composites, fabricated by powder metallurgy technique. Wear tests under dry sliding condition were carried out on the prepared composite samples with different proportions/weight percentage (wt%), using a pin-on-disc apparatus. Mg, MoS2, B4C and their various composites were characterized, using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy analysis. The experiments were conducted using L27 orthogonal array with five factors at three levels that affected the tribological performance. The wear resistance of the hybrid Mg–B4C–MoS2 composites significantly increased when compared with Mg–B4C and Mg–MoS2 composites, due to the refined effect of both reinforcements. Analysis of variance and grey-relational analysis result showed that increase in MoS2, sliding distance (DSl) and load (LSl) significantly influenced the tribological performance of the hybrid composites. Mg–10wt%B4C–5wt%MoS2 exhibited significant best improvement on the multi-response tribological performance. The optimum quantity of MoS2 reinforcement was around 7 wt%. Beyond this threshold proportion, wear was significantly increased, due to the agglomeration of MoS2 particles. Hardness of the composites increased with hybridized reinforcements. SEM micrographs depicted the homogeneous dispersion of reinforcements in the Mg matrix. Also, SEM micrographs of the worn surfaces confirmed that delamination wear mechanism was dominant on the Mg hybrid composites.



中文翻译:

MoS2杂化对Mg-B4C复合材料摩擦学行为影响的表征和优化

航空航天和汽车工业在开发具有高耐腐蚀性和耐磨性的轻质材料方面面临着挑战。镁 (Mg) 合金优于整体材料,因为它们具有最大的强度重量比。这些挑战可以通过应用镁基混合复合材料来解决。因此,本研究调查了二硫化钼 (MoS 2 ) 增强材料对通过粉末冶金技术制造的镁-碳化硼 (Mg-B 4 C) 杂化复合材料摩擦学性能的杂化影响。使用针盘式装置对制备的不同比例/重量百分比 (wt%) 的复合材料样品进行干滑动条件下的磨损试验。Mg、MoS 2、B 4使用 X 射线衍射、热重分析、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱分析对 C 及其各种复合材料进行了表征。使用 L 27正交阵列进行实验,在三个水平上有五个影响摩擦学性能的因素。与 Mg-B 4 C 和 Mg-MoS 2复合材料相比,混合 Mg-B 4 C-MoS 2复合材料的耐磨性显着提高,这是由于两种增强材料的细化效果。方差分析和灰色关联分析结果表明,MoS 2、滑动距离( D Sl )和载荷( LSl ) 显着影响了混合复合材料的摩擦学性能。Mg–10wt%B 4 C–5wt%MoS 2在多响应摩擦学性能上表现出显着的最佳改进。MoS 2增强剂的最佳用量约为7 wt%。超过该阈值比例,由于 MoS 2颗粒的团聚,磨损显着增加。复合材料的硬度随着混合增强材料而增加。SEM 显微照片描绘了增强材料在镁基体中的均匀分散。此外,磨损表面的 SEM 显微照片证实,分层磨损机制在 Mg 杂化复合材料上占主导地位。

更新日期:2021-06-21
down
wechat
bug