当前位置: X-MOL 学术Nat. Photon. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconfigurable electronic circuits for magnetic fields controlled by structured light
Nature Photonics ( IF 32.3 ) Pub Date : 2021-06-21 , DOI: 10.1038/s41566-021-00832-9
K. Jana , K. R. Herperger , F. Kong , Y. Mi , C. Zhang , P. B. Corkum , S. Sederberg

Dynamic control over the conduction band electrons of a semiconductor is a central technological pursuit. Beyond electronic circuitry, flexible control over the spatial and temporal character of semiconductor currents enables precise spatiotemporal structuring of magnetic fields. Despite their importance in science and technology, the control of magnetic fields at the micrometre spatial scale and femtosecond temporal scale using conventional electromagnets remains challenging. Here, we apply structured light beams to interfering photoexcitation pathways in gallium arsenide to sculpt the spatial and momentum configuration of its conduction band population. Programmable control over several hundred micrometre-scale current elements is achieved by manipulating the wavefronts of an optical beam using a spatial light modulator, enabling vast flexibility in the excited current patterns. Using this platform, we demonstrate dynamic optoelectronic interconnects, circuits for spatially tailored magnetic fields and magnetic field lattices.



中文翻译:

结构光控制磁场的可重构电子电路

对半导体导带电子的动态控制是一项核心技术追求。除了电子电路之外,对半导体电流的空间和时间特性的灵活控制可以实现磁场的精确时空结构。尽管它们在科学和技术中很重要,但使用传统电磁体控制微米空间尺度和飞秒时间尺度的磁场仍然具有挑战性。在这里,我们将结构化光束应用于砷化镓中的干扰光激发路径,以塑造其导带群的空间和动量配置。通过使用空间光调制器操纵光束的波前,实现对数百微米级电流元件的可编程控制,使激发电流模式具有极大的灵活性。使用这个平台,我们展示了动态光电互连、空间定制磁场电路和磁场晶格。

更新日期:2021-06-21
down
wechat
bug