当前位置: X-MOL 学术Crit. Rev. Biochem. Mol. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea
Critical Reviews in Biochemistry and Molecular Biology ( IF 6.2 ) Pub Date : 2021-06-20 , DOI: 10.1080/10409238.2021.1925215
Christine A Ziegler 1 , Peter L Freddolino 1, 2
Affiliation  

Abstract

Since the discovery of the Escherichia coli leucine-responsive regulatory protein (Lrp) almost 50 years ago, hundreds of Lrp homologs have been discovered, occurring in 45% of sequenced bacteria and almost all sequenced archaea. Lrp-like proteins are often referred to as the feast/famine regulatory proteins (FFRPs), reflecting their common regulatory roles. Acting as either global or local transcriptional regulators, FFRPs detect the environmental nutritional status by sensing small effector molecules (usually amino acids) and regulate the expression of genes involved in metabolism, virulence, motility, nutrient transport, stress tolerance, and antibiotic resistance to implement appropriate behaviors for the specific ecological niche of each organism. Despite FFRPs’ complexity, a significant role in gene regulation, and prevalence throughout prokaryotes, the last comprehensive review on this family of proteins was published about a decade ago. In this review, we integrate recent notable findings regarding E. coli Lrp and other FFRPs across bacteria and archaea with previous observations to synthesize a more complete view on the mechanistic details and biological roles of this ancient class of transcription factors.



中文翻译:

亮氨酸反应调节蛋白/饥荒调节蛋白:细菌和古细菌中一类古老而复杂的转录调节因子

摘要

自从发现大肠杆菌亮氨酸反应调节蛋白 (Lrp) 大约 50 年前,已发现数百种 Lrp 同源物,存在于 45% 的已测序细菌和几乎所有已测序的古细菌中。Lrp 样蛋白通常被称为盛宴/饥荒调节蛋白 (FFRP),反映了它们共同的调节作用。作为全局或局部转录调节因子,FFRP 通过感知小效应分子(通常是氨基酸)来检测环境营养状况,并调节参与代谢、毒力、运动、营养转运、压力耐受和抗生素抗性的基因的表达以实施适合每个生物的特定生态位的行为。尽管 FFRP 很复杂,在基因调控中发挥重要作用,并且在原核生物中普遍存在,大约十年前发表了关于这个蛋白质家族的最后一次综合评论。在这篇综述中,我们整合了最近关于大肠杆菌Lrp 和其他跨细菌和古细菌的 FFRP 与以前的观察结果合成了关于这一古老转录因子类别的机制细节和生物学作用的更完整的观点。

更新日期:2021-07-05
down
wechat
bug