当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large creep formability and strength–ductility synergy enabled by engineering dislocations in aluminum alloys
International Journal of Plasticity ( IF 9.4 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.ijplas.2020.102774
Chunhui Liu , Jianshi Yang , Peipei Ma , Ziyao Ma , Lihua Zhan , Kailiang Chen , Minghui Huang , Jianjun Li , Zhiming Li

Abstract Light-weight aluminum alloys are key structural materials widely used in transportation and constructions. Higher strength aluminum alloys are still urgently needed to further improve safety and energy efficiency. However, strength increase usually leads to higher difficulty of manufacturing and ductility loss of the final product. Also, most metallurgical methods to make stronger aluminum alloys are costly and hard to achieve large-scale production. Here, we develop a strategy to dramatically enhance the uniform creep formability of a representative aluminum alloy with an increase of yield strength by 100–200 MPa without compromising ductility compared to that under conventional treatments. The creep strain under an applied stress of 150 MPa is 8 times and 20 times higher than that of conventional T3 and T4 alloy, respectively. The enhanced creep formability and post-form mechanical properties are enabled by engineering dislocations, i.e., tailoring the density and mobility of dislocations in the aluminum alloys upon cold-rolling and creep age forming. The strategy is realized here by bulk metallurgical processes at very low cost. Our effort thus paves a new way for economical manufacturing of stronger aluminum alloy components and sheds light on the enormous untapped potential of the strategy of engineering dislocations.

中文翻译:

通过铝合金中的工程位错实现大的蠕变成形性和强度-延展性协同作用

摘要 轻质铝合金是广泛应用于交通运输和建筑的关键结构材料。仍然迫切需要更高强度的铝合金以进一步提高安全性和能源效率。然而,强度的增加通常会导致最终产品的制造难度增加和延展性损失。此外,大多数制造更坚固铝合金的冶金方法成本高昂且难以实现大规模生产。在这里,我们开发了一种策略,以显着提高代表性铝合金的均匀蠕变成形性,与传统处理相比,屈服强度增加 100-200 MPa,同时不影响延展性。150 MPa 外加应力下的蠕变应变分别比传统 T3 和 T4 合金高 8 倍和 20 倍。通过工程位错,即在冷轧和蠕变时效成形时调整铝合金中位错的密度和迁移率,可以实现增强的蠕变成形性和后成形机械性能。该策略是通过批量冶金工艺以非常低的成本实现的。因此,我们的努力为经济地制造更坚固的铝合金部件铺平了道路,并揭示了工程错位战略的巨大未开发潜力。
更新日期:2020-11-01
down
wechat
bug