当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A non-local crystal plasticity constitutive model for hexagonal close-packed polycrystals
International Journal of Plasticity ( IF 9.8 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.ijplas.2020.102883
Omid Sedaghat , Hamidreza Abdolvand

Abstract A strain gradient crystal plasticity finite element model is developed to study the evolution of internal and localized elastic strains in hexagonal close-packed polycrystals. The results of the model are firstly compared to the previously published data for a series of in-situ neutron diffraction experiments conducted on α-zirconium specimens. The development of internal lattice strains is studied first without considering the possible effects of grain morphologies and locations. This is followed by importing the “as-measured” grain maps into the model, and investigating the development of localized lattice rotation fields, geometrically necessary dislocation densities, and statistically stored dislocation densities in the vicinity of twins. The numerical results are compared to those measured for a deformed α-zirconium specimen using high angular resolution electron back scatter diffraction technique. To understand the benefits of using non-local formulation, numerical results are further compared to those from a conventional crystal plasticity model. It is shown that while the calculated lattice strains and lattice rotations from both models are in agreement with the measured ones, the non-local model provides a better estimation of localized stresses in the regions with a sharp strain gradient. This difference is more pronounced in the vicinity of twins, where the calculated stresses and geometrically necessary dislocation densities by the non-local model are in better agreement with the measurements.

中文翻译:

六方密堆积多晶的非局域晶体塑性本构模型

摘要 建立了应变梯度晶体塑性有限元模型来研究六方密堆积多晶内部和局部弹性应变的演变。该模型的结果首先与之前公布的一系列在 α-锆试样上进行的原位中子衍射实验的数据进行了比较。首先研究内部晶格应变的发展,而没有考虑晶粒形态和位置的可能影响。随后将“测量值”晶粒图导入模型,并研究局部晶格旋转场的发展、几何上必要的位错密度以及孪晶附近统计存储的位错密度。将数值结果与使用高角分辨率电子背散射衍射技术对变形 α-锆试样测量的结果进行比较。为了理解使用非局部公式的好处,我们将数值结果与传统晶体塑性模型的结果进行进一步比较。结果表明,虽然两种模型计算出的晶格应变和晶格旋转与测量值一致,但非局部模型可以更好地估计应变梯度陡峭区域中的局部应力。这种差异在孪晶附近更为明显,其中非局部模型计算出的应力和几何上必要的位错密度与测量结果更加吻合。为了理解使用非局部公式的好处,我们将数值结果与传统晶体塑性模型的结果进行进一步比较。结果表明,虽然两种模型计算出的晶格应变和晶格旋转与测量值一致,但非局部模型可以更好地估计应变梯度陡峭区域中的局部应力。这种差异在孪晶附近更为明显,其中非局部模型计算出的应力和几何上必要的位错密度与测量结果更加吻合。为了理解使用非局部公式的好处,我们进一步将数值结果与传统晶体塑性模型的结果进行比较。结果表明,虽然两种模型计算出的晶格应变和晶格旋转与测量值一致,但非局部模型可以更好地估计应变梯度陡峭区域中的局部应力。这种差异在孪晶附近更为明显,其中非局部模型计算出的应力和几何上必要的位错密度与测量结果更加吻合。结果表明,虽然两种模型计算出的晶格应变和晶格旋转与测量值一致,但非局部模型可以更好地估计应变梯度陡峭区域中的局部应力。这种差异在孪晶附近更为明显,其中非局部模型计算出的应力和几何上必要的位错密度与测量结果更加吻合。结果表明,虽然两种模型计算出的晶格应变和晶格旋转与测量值一致,但非局部模型可以更好地估计应变梯度陡峭区域中的局部应力。这种差异在孪晶附近更为明显,其中非局部模型计算出的应力和几何上必要的位错密度与测量结果更加吻合。
更新日期:2021-01-01
down
wechat
bug