当前位置: X-MOL 学术bioRxiv. Biophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Switching an active site helix in dihydrofolate reductase reveals limits to sub-domain modularity
bioRxiv - Biophysics Pub Date : 2021-07-02 , DOI: 10.1101/2021.06.18.448971
Victor Y. Zhao , Joao V. Rodrigues , Elena R. Lozovsky , Daniel L. Hartl , Eugene I. Shakhnovich

To what degree are individual structural elements within proteins modular such that similar structures from unrelated proteins can be interchanged? We study sub-domain modularity by creating 20 chimeras of an enzyme, E. coli dihydrofolate reductase (DHFR), in which a catalytically important, 10-residue α-helical sequence is replaced by α-helical sequences from a diverse set of proteins. The chimeras stably fold but have a range of diminished thermal stabilities and catalytic activities. Evolutionary coupling analysis indicates that the residues of this α-helix are under selection pressure to maintain catalytic activity in DHFR. We performed molecular dynamics simulations using replica exchange with solute-tempering. Chimeras with low catalytic activity exhibit non-helical conformations that block the binding site and disrupt the positioning of the catalytically essential residue D27. Simulation observables and in vitro measurements of thermal stability and substrate binding affinity are strongly correlated. Several E. coli strains with chromosomally integrated chimeric DHFRs can grow, with growth rates that follow predictions from a kinetic flux model that depends on the intracellular abundance and catalytic activity of DHFR. Our findings show that although α-helices are not universally substitutable, the molecular and fitness effects of modular segments can be predicted by the biophysical compatibility of the replacement segment.

中文翻译:

切换二氢叶酸还原酶中的活性位点螺旋揭示了子域模块化的限制

蛋白质中的单个结构元素在多大程度上模块化,使得来自不相关蛋白质的相似结构可以互换?我们通过创建 20 个酶的嵌合体来研究子域模块性,即大肠杆菌二氢叶酸还原酶 (DHFR),其中具有催化作用的 10 个残基 α-螺旋序列被来自不同蛋白质组的 α-螺旋序列取代。嵌合体稳定折叠,但具有一系列降低的热稳定性和催化活性。进化耦合分析表明该 α-螺旋的残基处于选择压力下以维持 DHFR 的催化活性。我们使用带有溶质回火的副本交换进行了分子动力学模拟。具有低催化活性的嵌合体表现出非螺旋构象,可阻断结合位点并破坏催化必需残基 D27 的定位。热稳定性和底物结合亲和力的模拟观察和体外测量密切相关。几种具有染色体整合嵌合 DHFR 的大肠杆菌菌株可以生长,其生长速率遵循动力学通量模型的预测,该模型取决于细胞内丰度和 DHFR 的催化活性。我们的研究结果表明,虽然 α 螺旋不是普遍可替代的,但模块段的分子和适应性效应可以通过替代段的生物物理兼容性来预测。热稳定性和底物结合亲和力的模拟观察和体外测量密切相关。几种具有染色体整合嵌合 DHFR 的大肠杆菌菌株可以生长,其生长速率遵循动力学通量模型的预测,该模型取决于细胞内丰度和 DHFR 的催化活性。我们的研究结果表明,虽然 α 螺旋不是普遍可替代的,但模块段的分子和适应性效应可以通过替代段的生物物理兼容性来预测。热稳定性和底物结合亲和力的模拟观察和体外测量密切相关。几种具有染色体整合嵌合 DHFR 的大肠杆菌菌株可以生长,其生长速率遵循动力学通量模型的预测,该模型取决于细胞内丰度和 DHFR 的催化活性。我们的研究结果表明,虽然 α 螺旋不是普遍可替代的,但模块段的分子和适应性效应可以通过替代段的生物物理兼容性来预测。
更新日期:2021-07-02
down
wechat
bug