当前位置: X-MOL 学术J. Quant. Spectrosc. Radiat. Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation of light scattering in large, disordered nanostructures using a periodic T-matrix method
Journal of Quantitative Spectroscopy and Radiative Transfer ( IF 2.3 ) Pub Date : 2021-06-18 , DOI: 10.1016/j.jqsrt.2021.107802
Dominik Theobald , Dominik Beutel , Luisa Borgmann , Henning Mescher , Guillaume Gomard , Carsten Rockstuhl , Uli Lemmer

To model and design light propagation in disordered optical nanostructures and materials, any applicable simulation technique has to cope with enormous computational challenges in a bearable time frame. To circumvent these, the introduction of an artificial periodicity to the disordered particle structure allows to rely on computational techniques that exploit periodic boundary conditions. Choosing a rather large periodicity promises to preserve randomness in form of a close-range disorder but can introduce false interferences. So far, it remains open how the artificial periodicity has to be chosen to minimize its detrimental influence. Here, we combine the superposition T-matrix scheme with an Ewald sum formulation to account for light scattering in periodic particle arrangements that contain hundreds to thousands of individual scatterers per unit cell. Simulations reveal that the periodicity’s influence cannot be minimized by simply choosing one single period much longer than the excitation wavelength. The excitation of lattice induced resonances prevents so. However, choosing a periodicity that does not sustain such detrimental features allows for reliable predictions. With that, the presented approach is suitable to derive spectral information about wave-optical phenomena in large, random particle arrangements with a spatial extend beyond those accessible with other full-wave solvers.



中文翻译:

使用周期性 T 矩阵方法模拟大型无序纳米结构中的光散射

为了对无序光学纳米结构和材料中的光传播进行建模和设计,任何适用的模拟技术都必须在可承受的时间范围内应对巨大的计算挑战。为了规避这些,将人工周期性引入无序粒子结构允许依赖利用周期性边界条件的计算技术。选择相当大的周期性有望以近距离无序的形式保持随机性,但可能会引入虚假干扰。到目前为止,如何选择人工周期以最小化其不利影响仍然是开放的。这里,我们将叠加 T 矩阵方案与 Ewald 求和公式相结合,以解释周期性粒子排列中的光散射,每个晶胞包含数百到数千个单独的散射体。模拟表明,不能通过简单地选择一个比激发波长长得多的单个周期来最小化周期性的影响。晶格诱发共振的激发阻止了这种情况。然而,选择不支持这种有害特征的周期性允许可靠的预测。因此,所提出的方法适用于在大的、随机的粒子排列中导出有关波光现象的光谱信息,其空间扩展超出了其他全波求解器可访问的范围。模拟表明,不能通过简单地选择一个比激发波长长得多的单个周期来最小化周期性的影响。晶格诱发共振的激发阻止了这种情况。然而,选择不支持这种有害特征的周期性允许可靠的预测。因此,所提出的方法适用于在大的、随机的粒子排列中导出有关波光现象的光谱信息,其空间扩展超出了其他全波求解器可访问的范围。模拟表明,不能通过简单地选择一个比激发波长长得多的单个周期来最小化周期性的影响。晶格诱发共振的激发阻止了这种情况。然而,选择不支持这种有害特征的周期性允许可靠的预测。因此,所提出的方法适用于在大的、随机的粒子排列中导出有关波光现象的光谱信息,其空间扩展超出了其他全波求解器可访问的范围。

更新日期:2021-07-02
down
wechat
bug