当前位置: X-MOL 学术J. Math. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New Regularity Criteria for Weak Solutions to the MHD Equations in Terms of an Associated Pressure
Journal of Mathematical Fluid Mechanics ( IF 1.2 ) Pub Date : 2021-06-17 , DOI: 10.1007/s00021-021-00597-9
Jiří Neustupa , Minsuk Yang

We assume that \(\Omega \) is either a smooth bounded domain in \({{\mathbb {R}}}^3\) or \(\Omega ={{\mathbb {R}}}^3\), and \(\Omega '\) is a sub-domain of \(\Omega \). We prove that if \(0\le T_1<T_2\le T\le \infty \), \(({\mathbf {u}},{\mathbf {b}},p)\) is a suitable weak solution of the initial–boundary value problem for the MHD equations in \(\Omega \times (0,T)\) and either \({\mathscr {F}}_{\gamma }(p_-)\in L^{\infty }(T_1,T_2;\, L^{3/2}(\Omega '))\) or \({\mathscr {F}}_{\gamma } ({\mathcal {B}}_+)\in L^{\infty }(T_1,T_2;\, L^{3/2}(\Omega '))\) for some \(\gamma >0\), where \({\mathscr {F}}_{\gamma }(s)=s\, [\ln {}(1+ s)]^{1+\gamma }\), \({\mathcal {B}}= p+\frac{1}{2}|{\mathbf {u}}|^2+\frac{1}{2}|{\mathbf {b}}|^2\) and the subscripts “−” and “\(+\)” denote the negative and the nonnegative part, respectively, then the solution \(({\mathbf {u}},{\mathbf {b}},p)\) has no singular points in \(\Omega '\times (T_1,T_2)\). If \({\mathbf {b}}\equiv {\mathbf {0}}\) then our result generalizes some previous known results from the theory of the Navier–Stokes equations.



中文翻译:

就相关压力而言,MHD 方程弱解的新正则准则

我们假设\(\Omega \)\({{\mathbb {R}}}^3\)\(\Omega ={{\mathbb {R}}}^3\) 中的光滑有界域和\(\欧米茄“\)是一个子域\(\欧米茄\) 。我们证明如果\(0\le T_1<T_2\le T\le \infty \) , \(({\mathbf {u}},{\mathbf {b}},p)\)是一个合适的弱解在\(\Omega \times (0,T)\)\({\mathscr {F}}_{\gamma }(p_-)\in L^{ \infty }(T_1,T_2;\, L^{3/2}(\Omega '))\)\({\mathscr {F}}_{\gamma } ({\mathcal {B}}_+ )\in L^{\infty }(T_1,T_2;\, L^{3/2}(\Omega '))\)一些\(\gamma >0\),其中\({\mathscr {F}}_{\gamma }(s)=s\, [\ln {}(1+ s)]^{1+\gamma }\ ) , \({\mathcal {B}}= p+\frac{1}{2}|{\mathbf {u}}|^2+\frac{1}{2}|{\mathbf {b}}| ^2\)和下标“-”和“ \(+\) ”分别表示负和非负部分,那么解\(({\mathbf {u}},{\mathbf {b}}, p)\)\(\Omega '\times (T_1,T_2)\) 中没有奇异点。如果\({\mathbf {b}}\equiv {\mathbf {0}}\)那么我们的结果概括了一些先前已知的 Navier-Stokes 方程理论结果。

更新日期:2021-06-18
down
wechat
bug