当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis of tin dioxide (SnO2) hollow nanospheres and its ethanol-sensing performance augmented by gold nanoparticle decoration
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2021-06-18 , DOI: 10.1016/j.jallcom.2021.160868
Zicheng Cai , Eunjung Goo , Sunghoon Park

Herein, we report the fabrication of ethanol sensors with superior performance using gold (Au) nanoparticles decorated SnO2 hollow nanospheres (Au-SnO2 HNS). The SnO2 hollow nanospheres (SnO2 HNS) were synthesized by a hydrothermal method using carbon nanospheres as a sacrificial template. To improve their ethanol-sensing performance, Au nanoparticles were decorated on their surfaces. Morphological characterization by scanning electron microscopy and transmission electron microscopy indicates that the diameter of the SnO2 HNS and Au-SnO2 HNS ranged from 150 to 250 nm, and the wall thickness was 10 nm. The diameter of the Au nanoparticles on the surface of the hollow nanospheres ranged from 3 to 5 nm. After Au nanoparticle decoration, the ethanol-sensing response of SnO2 HNS improved 2.7 times when exposed to 100 ppm ethanol gas measured in 250 °C. Furthermore, the sensing response of Au-SnO2 HNS-based sensors presents a selective sensing response towards ethanol gas compared to other volatile organic compound (VOC) gases. These improved sensing properties originate from the optimized morphologies of the sensing materials and the catalytic effect of the Au nanoparticles.



中文翻译:

二氧化锡(SnO 2)空心纳米球的合成及其通过金纳米颗粒装饰增强的乙醇传感性能

在此,我们报告了使用金 (Au) 纳米粒子装饰的 SnO 2空心纳米球 (Au-SnO 2 HNS)制造具有卓越性能的乙醇传感器。SnO 2中空纳米球(SnO 2 HNS)是通过使用碳纳米球作为牺牲模板的水热法合成的。为了提高它们的乙醇传感性能,金纳米粒子被装饰在它们的表面上。扫描电子显微镜和透射电子显微镜的形态表征表明,SnO 2 HNS 和 Au-SnO 2的直径HNS 范围从 150 到 250 nm,壁厚为 10 nm。空心纳米球表面的金纳米粒子的直径范围为 3 至 5 nm。金纳米粒子修饰后,当暴露于 250 °C 下测量的 100 ppm 乙醇气体时,SnO 2 HNS的乙醇传感响应提高了 2.7 倍。此外,与其他挥发性有机化合物 (VOC) 气体相比,基于Au-SnO 2 HNS 的传感器的传感响应呈现出对乙醇气体的选择性传感响应。这些改进的传感特性源于传感材料的优化形态和 Au 纳米颗粒的催化作用。

更新日期:2021-06-23
down
wechat
bug