当前位置: X-MOL 学术Res. Nondestruct. Eval. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stress-Dependent Magnetic Charge Model for Micro-Defects of Steel Wire Based on the Magnetic Memory Method
Research in Nondestructive Evaluation ( IF 1.0 ) Pub Date : 2019-05-31 , DOI: 10.1080/09349847.2019.1617914
Sanqing Su 1 , Xiaoping Ma 1 , Wei Wang 1 , Yiyi Yang 1
Affiliation  

ABSTRACT Magnetic memory method (MMM) is widely used for diagnosing ferromagnetic material on early stage as a nondestructive technology, but no clear description exists for the influence of stress on MMM signals at the micro-defect position on the surface of steel wire yet. Hence, based on traditional magnetic charge model, a stress-dependent magnetic charge model that combined the Jiles magneto-mechanical constitutive relation was intended to calculate the MMM signals around micro-defect on surface of steel wire. Meanwhile, the Hp(y) signals on surface of steel wire with different defects were measured during the whole tension test. By comparing the results of theoretical model and experiment, some conclusions can be drawn. First, the position of vale-peak on Hp(y) signals curves can be used to determine the micro-defect on steel wire. Secondly, the vale-peak amplitude (Sv-p) and vale-peak width (Lv-p) of Hp(y) signals curves, as two characteristic parameters of magnetic signals, not only can reflect the variations of defect depth and defect width, but also judge the load subjected by specimen. Sv-p has an approximate growth with the increase of defect depth as a whole, but decreases with the increase of loads. And the effect of load on Sv-p increases with defect depth. Lv-p has an approximate growth with the increase of defect width as a whole, but does not change with the increase of loads. Finally, the stress-dependent magnetic charge model can be better to reflect the changing laws of Hp(y) signals around defect and can be used for the numerical analysis of MMM signals on surface of steel wire.

中文翻译:

基于磁记忆法的钢丝微缺陷的应力相关磁荷模型

摘要 磁记忆法(MMM)作为一种无损技术在早期被广泛应用于铁磁材料的诊断,但对于钢丝表面微缺陷位置处应力对MMM信号的影响,目前还没有明确的描述。因此,在传统磁荷模型的基础上,结合Jiles磁力-机械本构关系的应力相关磁荷模型,旨在计算钢丝表面微缺陷周围的MMM信号。同时,在整个拉伸试验过程中,测量了不同缺陷钢丝表面的Hp(y)信号。通过比较理论模型和实验的结果,可以得出一些结论。首先,Hp(y) 信号曲线上的值峰值位置可用于确定钢丝上的微缺陷。第二,Hp(y)信号曲线的谷峰幅度(Sv-p)和谷峰宽度(Lv-p)作为磁信号的两个特征参数,不仅可以反映缺陷深度和缺陷宽度的变化,而且还要判断试件所承受的载荷。Sv-p 总体上随着缺陷深度的增加而近似增长,但随着载荷的增加而减小。并且负载对 Sv-p 的影响随着缺陷深度的增加而增加。Lv-p 整体上随着缺陷宽度的增加有近似的增长,但不随负载的增加而变化。最后,应力相关磁荷模型可以更好地反映缺陷周围Hp(y)信号的变化规律,可用于钢丝表面MMM信号的数值分析。作为磁信号的两个特征参数,不仅可以反映缺陷深度和缺陷宽度的变化,还可以判断试件所承受的载荷。Sv-p 总体上随着缺陷深度的增加而近似增长,但随着载荷的增加而减小。并且负载对 Sv-p 的影响随着缺陷深度的增加而增加。Lv-p 整体上随着缺陷宽度的增加有近似的增长,但不随负载的增加而变化。最后,应力相关磁荷模型可以更好地反映缺陷周围Hp(y)信号的变化规律,可用于钢丝表面MMM信号的数值分析。作为磁信号的两个特征参数,不仅可以反映缺陷深度和缺陷宽度的变化,还可以判断试件所承受的载荷。Sv-p 总体上随着缺陷深度的增加而近似增长,但随着载荷的增加而减小。并且负载对 Sv-p 的影响随着缺陷深度的增加而增加。Lv-p 整体上随着缺陷宽度的增加有近似的增长,但不随负载的增加而变化。最后,应力相关磁荷模型可以更好地反映缺陷周围Hp(y)信号的变化规律,可用于钢丝表面MMM信号的数值分析。Sv-p 总体上随着缺陷深度的增加而近似增长,但随着载荷的增加而减小。并且负载对 Sv-p 的影响随着缺陷深度的增加而增加。Lv-p 整体上随着缺陷宽度的增加有近似的增长,但不随负载的增加而变化。最后,应力相关磁荷模型可以更好地反映缺陷周围Hp(y)信号的变化规律,可用于钢丝表面MMM信号的数值分析。Sv-p 总体上随着缺陷深度的增加而近似增长,但随着载荷的增加而减小。并且负载对 Sv-p 的影响随着缺陷深度的增加而增加。Lv-p 整体上随着缺陷宽度的增加有近似的增长,但不随负载的增加而变化。最后,应力相关磁荷模型可以更好地反映缺陷周围Hp(y)信号的变化规律,可用于钢丝表面MMM信号的数值分析。
更新日期:2019-05-31
down
wechat
bug