当前位置: X-MOL 学术Curr. Nanosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bacterial Cellulose: A Versatile Material for Fabrication of Conducting Nanomaterials
Current Nanoscience ( IF 1.4 ) Pub Date : 2021-05-01 , DOI: 10.2174/1573413716999201005214832
Mazhar Ul-Islam 1 , Sumaiya Yasir 1 , Laiqahmed Mombasawala 1 , Sehrish Manan 2 , Muhammad Wajid Ullah 2
Affiliation  

Nanomaterials such as nanoparticles, nanorods, nanofibers, and nanocomposites have received immense consideration and are widely used for different applications in various fields. The exploration of new synthesis routes, simple processing techniques, and specialized applications are growing to different fields and bringing extra interest to stakeholders. Bacterial cellulose (BC), a biopolymer produced by microbial and cell-free systems, is receiving growing applications in various fields, including medical, energy, environment, food, textile, and optoelectronics. As pristine BC lacks antimicrobial activity, conducting and magnetic properties, and possesses limited biocompatibility and optical transparency, its composites with other materials are developed to bless it with such features as well as improve its existing properties. Herein, we have reviewed the role of BC as a matrix to impregnate conducting nanomaterials (e.g., carbon nanotubes, graphene, and metals and metal oxides) and polymers (polyaniline, polypyrrole, and poly (3,4-ethylenedioxythiophene)–poly (styrene sulfonate)) for the development of composite materials. These BC-based composite materials find applications in the development of energy storage devices, wearable electronics, biosensors, and controlled drug delivery systems. We have also highlighted the major hurdles to the industrialization of BC-based composites and provided future projections of such conducting nanomaterials.



中文翻译:

细菌纤维素:一种用于制造导电纳米材料的多功能材料

纳米材料,如纳米颗粒、纳米棒、纳米纤维和纳米复合材料受到了广泛的关注,并被广泛用于各个领域的不同应用。对新合成路线、简单加工技术和专业应用的探索正在向不同领域发展,并给利益相关者带来了额外的兴趣。细菌纤维素 (BC) 是一种由微生物和无细胞系统生产的生物聚合物,在医疗、能源、环境、食品、纺织和光电子等各个领域得到越来越多的应用。由于原始 BC 缺乏抗菌活性、导电和磁性,并且具有有限的生物相容性和光学透明度,因此开发其与其他材料的复合材料以使其具有这些特性并改善其现有性能。在此处,我们已经回顾了 BC 作为浸渍导电纳米材料(例如,碳纳米管、石墨烯、金属和金属氧化物)和聚合物(聚苯胺、聚吡咯和聚(3,4-乙撑二氧噻吩)-聚(苯乙烯磺酸盐))的基质的作用) 用于开发复合材料。这些基于 BC 的复合材料可用于开发能量存储设备、可穿戴电子设备、生物传感器和受控药物输送系统。我们还强调了基于 BC 的复合材料工业化的主要障碍,并提供了此类导电纳米材料的未来预测。4-亚乙基二氧噻吩)-聚(苯乙烯磺酸盐))用于复合材料的开发。这些基于 BC 的复合材料可用于开发能量存储设备、可穿戴电子设备、生物传感器和受控药物输送系统。我们还强调了基于 BC 的复合材料工业化的主要障碍,并提供了此类导电纳米材料的未来预测。4-亚乙基二氧噻吩)-聚(苯乙烯磺酸盐))用于复合材料的开发。这些基于 BC 的复合材料可用于开发能量存储设备、可穿戴电子设备、生物传感器和受控药物输送系统。我们还强调了基于 BC 的复合材料工业化的主要障碍,并提供了此类导电纳米材料的未来预测。

更新日期:2021-06-17
down
wechat
bug