当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive control of DGMSCMG using dynamic inversion and neural networks
Advances in Space Research ( IF 2.6 ) Pub Date : 2021-06-16 , DOI: 10.1016/j.asr.2021.06.018
Romulus Lungu , Mihai Lungu , Claudia Efrim

The paper presents a nonlinear dynamic model for DGMSCMGs, sometimes used as actuators to control the attitude of large satellites. The developed models describe the translation dynamics, the rotation dynamics of the Active Magnetic Bearing Rotor, as well as the rotation dynamics of the two mobile gimbals. Two control architectures are initially designed by using the dynamic inversion concept, proportional-integrator-derivative/proportional-derivative dynamic compensators, linear observers, and a neural network to compensate the effect of the dynamic inversion error. One also develops a similar adaptive control architecture consisting of a proportional-integrator dynamic compensator, a feed-forward neural network, and a linear observer. The latter system models two interconnected nonlinear servo-systems and controls the angular rates of the two mobile gimbals actuated by the attitude controller of the satellite. The validation of the novel control architectures is achieved in Matlab/Simulink, the obtained results proving a very good angular rate precision and the robustness of the control systems in relation to the external disturbances.



中文翻译:

使用动态反演和神经网络的 DGMSCMG 自适应控制

本文提出了 DGMSCMG 的非线性动力学模型,有时用作执行器来控制大型卫星的姿态。开发的模型描述了主动磁轴承转子的平移动力学、旋转动力学以及两个移动万向节的旋转动力学。两种控制架构最初是通过使用动态反演概念设计的,比例积分器微分/比例微分动态补偿器,线性观测器和神经网络来补偿动态反演误差的影响。还开发了一种类似的自适应控制架构,由比例积分器动态补偿器、前馈神经网络和线性观察器组成。后一个系统模拟两个相互连接的非线性伺服系统,并控制由卫星姿态控制器驱动的两个移动万向节的角速率。在 Matlab/Simulink 中实现了对新型控制架构的验证,获得的结果证明了非常好的角速率精度和控制系统相对于外部干扰的鲁棒性。

更新日期:2021-08-24
down
wechat
bug