当前位置: X-MOL 学术Plasmonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Radioplasmonics: Design of Metamaterial Milli-particles in Air and Absorbing Media for Antenna Communication and Human-Body In Vivo Applications
Plasmonics ( IF 3.3 ) Pub Date : 2021-06-16 , DOI: 10.1007/s11468-021-01471-0
Ricardo Martín Abraham-Ekeroth

Surface plasmons with MHz-GHz energies are predicted by using milliparticles made of metamaterials that behave like metals in the radiofrequency range. In this work, the so-called radioplasmonics is exploited to design scatterers embedded in different realistic media with tunable absorption or scattering properties. High-quality scattering/absorption based on plasmon excitation is demonstrated through a few simple examples, useful to build antennas with better performance than conventional ones. Systems embedded in absorbing media as saline solutions or biological tissues are also considered to improve biomedical applications and contribute with real-time, in vivo monitoring tools in body tissues. In this regard, any possible implementation is criticized by calculating the radiofrequency heating with full thermal simulations. As proof of the versatility offered by radioplasmonic systems, plasmon “hybridization” is used to enhance near-fields to unprecedented values or to tune resonances as in optical spectra, minimizing the heating effects. Finally, a monitorable drug-delivery in human tissue is illustrated with a hypothetical example. This study has remarkable consequences on the conception of plasmonics at macroscales. The recently developed concept of “spoof” plasmons achieved by complicated structures is simplified in radioplasmonics since bulk materials with elemental geometries are considered.



中文翻译:

放射性等离子体:设计用于天线通信和人体体内应用的空气和吸收介质中的超材料微颗粒

通过使用由在射频范围内表现得像金属的超材料制成的毫微粒,可以预测具有 MHz-GHz 能量的表面等离子体激元。在这项工作中,所谓的放射性等离子体被用来设计嵌入在不同现实介质中的具有可调吸收或散射特性的散射体。通过几个简单的例子展示了基于等离子体激发的高质量散射/吸收,有助于构建性能比传统天线更好的天线。嵌入在吸收介质中作为盐溶液或生物组织的系统也被认为可以改善生物医学应用,并有助于身体组织中的实时体内监测工具。在这方面,通过使用全热模拟计算射频加热来批评任何可能的实施方式。作为放射等离子体系统提供的多功能性的证明,等离子体“杂交”用于将近场增强到前所未有的值或调整光谱中的共振,将热效应降到最低。最后,用一个假设的例子说明了人体组织中可监测的药物输送。这项研究对宏观尺度的等离子体的概念产生了显着的影响。由于考虑了具有基本几何形状的散装材料,因此最近开发的通过复杂结构实现的“欺骗”等离子体的概念在放射性等离子体中得到了简化。

更新日期:2021-06-17
down
wechat
bug