当前位置: X-MOL 学术AAPG Bull. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
West Texas (Permian) Super Basin, United States: Tectonics, structural development, sedimentation, petroleum systems, and hydrocarbon reserves
AAPG Bulletin ( IF 2.7 ) Pub Date : 2021-06-09 , DOI: 10.1306/03042120130
Bill Fairhurst , Tom Ewing , Bob Lindsay

The West Texas (Permian) Super Basin is the prototype super basin. The basin has produced 28.9 billion bbl of oil and 203 TCF of gas (63 billion BOE, 1920–2019). The US Geological Survey and Bureau of Economic Geology estimate this super basin has remaining reserves of 120–137 billion BOE, twice the volume produced during the first 100 yr of hydrocarbon production. During the past decade, the West Texas Super Basin has been the driver of production growth in the United States and has decades of remaining economic production and reserve growth.The West Texas Super Basin is a complex Paleozoic basin built on a varied Proterozoic crust. After Cambrian rifting, regional subsidence began in the Middle Ordovician and continued into the Devonian, forming the Tobosa Basin. The early Paleozoic Tobosa Basin subsidence terminated during Mississippian epeirogenic uplift. A later stage of subsidence began in the Late Mississippian accompanied by large-scale faulting and moderate folding. This tectonic and structural development was controlled by basement terrains, earlier tectonic, and structure reactivated by compression of the Ancestral Rocky Mountains and Marathon-Ouachita orogenic events. These formed the Permian Basin. The Marathon-Ouachita tectonic event ended in the Wolfcampian (early Permian). Subsidence continued to the end of the Permian (Ochoan). Periodic subsidence during the Mesozoic was likely caused by Rocky Mountain (Laramide) deformation. Cenozoic (late Paleogene–Neogene) western uplift tilted the basin to the east. Each of these events has a significant influence on the basin petroleum systems.The basin has multiple source rocks and petroleum systems formed during various stages of basin development. During the formation of the early Paleozoic Tobosa Basin, Simpson Group and Woodford Shale source rocks were deposited. During the transitional basin development phase, the Barnett Shale source rocks were deposited, and during Permian Basin subsidence, the Wolfcamp and middle Permian (Leonardian and Guadalupian) source rocks were deposited. Continued subsidence into the Mesozoic resulted in the deposition of additional strata. These Mesozoic intervals are now mostly eroded but provided sufficient burial depths for thermal development and increased the extent of thermal effect for maturation and migration of hydrocarbons within these Paleozoic petroleum systems.Leonardian and Guadalupian conventional reservoirs have produced 71% of the resources from all conventional West Texas Super Basin reservoirs. These reservoirs are typically most abundant on the shelf crest (shelf to edge), where reservoir development is maximized and becomes a focus of hydrocarbon migration from the deeper Delaware and Midland Basins source rocks and shallower, more-proximal shelf and platform source rock systems.Unconventional resource reservoir oil production in the West Texas Super Basin accounted for just under 90% of total basin daily production at the close of the last decade (2010–2019). Total West Texas Super Basin production peaked in March 2020 at 4.7 million BOPD. Since that time, production has declined because of lower rates of investment driven by lower product prices.The West Texas Super Basin economic oil and gas production has benefited from an extensive infrastructure, a large geologic and engineering community, regulatory and public support, open access, sufficient capital availability, and a scalable service industry. The paradigm toward new drilling, completion, and production technology has been driven by unconventional resource reservoir development in the basin. These West Texas Super Basin technological developments have lead industry technology for unconventional resource development worldwide. Maintaining talented human resources and capital are challenges that time will tell if individual firms and the industry will meet to develop the hydrocarbon resources within the basin.

中文翻译:

美国西德克萨斯(二叠纪)超级盆地:构造、构造发展、沉积、石油系统和碳氢化合物储量

西德克萨斯(二叠纪)超级盆地是超级盆地的原型。该盆地已生产 289 亿桶石油和 203 TCF(630 亿桶油当量,1920-2019 年)。美国地质调查局和经济地质局估计这个超级盆地的剩余储量为 120-1370 亿桶油当量,是前 100 年油气生产量的两倍。在过去的十年中,西德克萨斯超级盆地一直是美国产量增长的驱动力,并且有几十年的剩余经济产量和储量增长。西德克萨斯超级盆地是一个复杂的古生代盆地,建立在多样的元古代地壳上。寒武纪裂谷后,中奥陶统区域性沉降开始,并持续到泥盆纪,形成托博萨盆地。早古生代 Tobosa 盆地的沉降在密西西比近海成因隆升期间终止。后期的沉降开始于密西西比纪晚期,伴随着大规模的断层作用和适度的褶皱。这种构造和结构发展受到基底地形、早期构造和结构的控制,这些结构通过祖先落基山脉的压缩和马拉松-瓦希塔造山事件重新激活。这些形成了二叠纪盆地。Marathon-Ouachita 构造事件在 Wolfcampian(二叠纪早期)结束。沉降一直持续到二叠纪(奥乔安)末期。中生代的周期性沉降很可能是由落基山(Laramide)变形引起的。新生代(晚古近纪-新近纪)西部隆起使盆地向东倾斜。这些事件中的每一个都对盆地石油系统产生重大影响。盆地发育不同阶段形成的多个烃源岩和油气系统。在早古生代托博萨盆地形成过程中,沉积了辛普森群和伍德福德页岩烃源岩。盆地过渡发育期沉积了巴尼特页岩烃源岩,二叠纪盆地沉降期间沉积了沃尔夫坎普和中二叠世(莱昂纳阶和瓜达卢普阶)烃源岩。进入中生代的持续下沉导致额外地层的沉积。这些中生代层段现在大部分被侵蚀,但为热力开发提供了足够的埋藏深度,并增加了这些古生代石油系统内烃类成熟和迁移的热效应程度。Leonardian 和 Guadalupian 常规油藏已生产了所有常规 West Texas Super Basin 油藏的 71% 的资源。这些储层通常在陆架顶部(陆架到边缘)最丰富,在那里储层开发最大化并成为烃从更深的特拉华和米德兰盆地烃源岩以及更浅、更近的陆架和平台烃源岩系统运移的焦点。在过去十年末(2010-2019 年),西德克萨斯超级盆地的非常规资源油藏石油产量占盆地日产量的近 90%。西德克萨斯超级盆地的总产量在 2020 年 3 月达到峰值,达到 470 万 BOPD。从那时起,由于产品价格下降导致投资率下降,产量下降。西德克萨斯超级盆地的经济油气生产得益于广泛的基础设施、庞大的地质和工程社区、监管和公共支持、开放获取、充足的资本可用性以及可扩展的服务行业。该盆地非常规资源储层的开发推动了新的钻井、完井和生产技术的发展。这些西德克萨斯超级盆地的技术发展引领了全球非常规资源开发的行业技术。保持有才华的人力资源和资本是挑战,时间会证明个别公司和行业是否会聚在一起开发盆地内的碳氢化合物资源。监管和公共支持、开放获取、充足的资本可用性以及可扩展的服务行业。该盆地非常规资源储层的开发推动了新的钻井、完井和生产技术的发展。这些西德克萨斯超级盆地的技术发展引领了全球非常规资源开发的行业技术。保持有才华的人力资源和资本是挑战,时间会证明个别公司和行业是否会聚在一起开发盆地内的碳氢化合物资源。监管和公共支持、开放获取、充足的资本可用性以及可扩展的服务行业。该盆地非常规资源储层的开发推动了新的钻井、完井和生产技术的发展。这些西德克萨斯超级盆地的技术发展引领了全球非常规资源开发的行业技术。保持有才华的人力资源和资本是挑战,时间会证明个别公司和行业是否会聚在一起开发盆地内的碳氢化合物资源。这些西德克萨斯超级盆地的技术发展引领了全球非常规资源开发的行业技术。保持有才华的人力资源和资本是挑战,时间会证明个别公司和行业是否会聚在一起开发盆地内的碳氢化合物资源。这些西德克萨斯超级盆地的技术发展引领了全球非常规资源开发的行业技术。保持有才华的人力资源和资本是挑战,时间会证明个别公司和行业是否会聚在一起开发盆地内的碳氢化合物资源。
更新日期:2021-06-17
down
wechat
bug