当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Additive manufacturing of high-performance carbon-composites: An integrated multi-axis pressure and temperature monitoring sensor
Composites Part B: Engineering ( IF 12.7 ) Pub Date : 2021-06-16 , DOI: 10.1016/j.compositesb.2021.109079
Hang-Gyeom Kim , Sugato Hajra , Dongik Oh , Namjung Kim , Hoe Joon Kim

The additive manufacturing research confides in developing three-dimensional (3D) printing routes for the fabrication of devices with multifunctional materials in various interesting application areas such as self-healing, energy conversion/storage/harvesting, and sensing platforms. This paper reports the design optimization, fabrication, and characterization of a multi-axis pressure sensor with temperature compensation using fused filament fabrication (FFF) 3D printing of conductive carbon-based composites. Additive manufacturing offers a faster fabrication of complex structures with multiple properties such as electrical, mechanical, or thermal properties. The complex and costly metal printing can be neglected, as the 3D printing of a conductive polymer is a promising technology to utilize the electrical properties of the printed materials along with mechanical flexibilities. The present work focuses on the development of a multi-axis pressure sensor integrated with a temperature-sensing element. The pressure-sensing mechanism is based on piezoresistive behavior while temperature sensing relies on temperature-dependent resistance shift of the carbon composite. The pressure sensing part comprises a hollow structure to ensure mechanical deformation upon applied pressure while the temperature sensor is buried inside the housing material. Herein, the conductive three-dimensional printable polymer is synthesized by solution casting method with Polylactic acid (PLA), multi-walled carbon nanotubes (MWCNTs), and dichloromethane (DCM) solvent, which is transformed into filament for printing. The direction of pressure and magnitude of temperature can be evaluated separately by calibrating the responses of an applied force and temperature. Moreover, an integrated temperature sensor calibrates the shift in the electrical resistance of the pressure sensor due to the alteration in environmental temperature. The additive manufactured dual pressure and temperature sensor could open up broad applications such as human motion monitoring systems and force sensing.



中文翻译:

高性能碳复合材料的增材制造:集成的多轴压力和温度监测传感器

增材制造研究致力于开发三维 (3D) 打印路线,用于在各种有趣的应用领域(如自愈、能量转换/存储/收集和传感平台)制造具有多功能材料的设备。本文报告了使用熔融长丝制造 (FFF) 3D 打印导电碳基复合材料进行温度补偿的多轴压力传感器的设计优化、制造和表征。增材制造可以更快地制造具有多种属性(例如电气、机械或热学属性)的复杂结构。复杂而昂贵的金属印刷可以忽略不计,因为导电聚合物的 3D 打印是一种很有前途的技术,可以利用打印材料的电气特性和机械灵活性。目前的工作重点是开发与温度传感元件集成的多轴压力传感器。压力传感机制基于压阻行为,而温度传感依赖于碳复合材料的温度相关电阻位移。压力传感部分包括中空结构,以确保在施加压力时产生机械变形,同时温度传感器埋在外壳材料内。在此,导电三维可印刷聚合物是通过溶液浇铸法与聚乳酸(PLA)、多壁碳纳米管(MWCNTs)和二氯甲烷(DCM)溶剂合成的,将其转化为用于印刷的长丝。通过校准所施加的力和温度的响应,可以分别评估压力的方向和温度的大小。此外,集成的温度传感器可校准由于环境温度变化而导致的压力传感器电阻的变化。增材制造的双压力和温度传感器可以开辟广泛的应用,如人体运动监测系统和力传感。一个集成的温度传感器校准由于环境温度变化而引起的压力传感器电阻的变化。增材制造的双压力和温度传感器可以开辟广泛的应用,如人体运动监测系统和力传感。一个集成的温度传感器校准由于环境温度变化而引起的压力传感器电阻的变化。增材制造的双压力和温度传感器可以开辟广泛的应用,如人体运动监测系统和力传感。

更新日期:2021-06-19
down
wechat
bug