当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved performance of GNSS precise point positioning for high-rate seismogeodesy with recent BDS-3 and Galileo
Advances in Space Research ( IF 2.8 ) Pub Date : 2021-06-15 , DOI: 10.1016/j.asr.2021.06.012
Rongxin Fang , Huanghui Lv , Yuanming Shu , Jiawei Zheng , Kunlun Zhang , Jingnan Liu

The continuously developing Global Navigation Satellite Systems (GNSS), in particular with the latest operational BDS and Galileo, provide good opportunities to enhance the performance of precise positioning. This study evaluates the performance of high-rate precise point positioning (PPP) applied for seismogeodesy with very recent BDS and Galileo. The static experiments with 20-Hz GNSS data show that Galileo and BDS-3/BDS-2 achieve comparable performances, with average 3D RMS values of 0.6–1.3 cm and 0.8–1.2 cm, respectively. In the dynamic experiments, we use a single-axis earthquake simulator of Quanser Shake Table II to simulate seismic waveforms of real earthquakes and collect 20-Hz GNSS data to evaluate the PPP performance. Taking the displacements recorded by the embedded encoder of the shake table as the truth, the accuracies of PPP displacements during the seismic events are 4–8 mm for GPS, 6–9 mm for BDS-2, and 3–6 mm for Galileo and BDS-3/BDS-2. By combining BDS-3 with BDS-2, the positioning accuracy of BDS is improved by 50% with respect to BDS-2 only. Galileo and BDS-3/BDS-2 perform slightly better than GPS, which is likely because the two latest operational systems use the more precise passive hydrogen maser clocks and have lower signal-in-space range error. The multi-GNSS solutions with GPS + Galileo + BDS-3/BDS-2 further improve the accuracy reaching 2–5 mm. We also identify a scale factor in the high-rate PPP displacements, which is probably induced by the dynamic stress error and related to the oscillating frequency. The scale factor reaches the maximum of 1.71 at an oscillating frequency around 2.5 Hz and then descends as the frequency increases. The improved performance of high-rate PPP augmented by the recent BDS-3 and Galileo is helpful to improve the practical level of high-rate GNSS in seismogeodesy and expand its applications to many other high-rate and high-accuracy applications.



中文翻译:

使用最新的 BDS-3 和伽利略改进了用于高速地震大地测量的 GNSS 精确点定位的性能

不断发展的全球导航卫星系统(GNSS),特别是最新的可运行的北斗系统和伽利略系统,为提高精确定位的性能提供了很好的机会。本研究评估了使用最新的 BDS 和伽利略进行地震测地学的高速精确点定位 (PPP) 的性能。使用 20Hz GNSS 数据的静态实验表明,Galileo 和 BDS-3/BDS-2 实现了相当的性能,平均 3D RMS 值分别为 0.6-1.3 cm 和 0.8-1.2 cm。在动力实验中,我们使用Quanser Shake Table II的单轴地震模拟器来模拟真实地震的地震波形,并收集20-Hz GNSS数据来评估PPP性能。以振动台嵌入式编码器记录的位移为真值,地震事件期间 PPP 位移的精度对于 GPS 为 4-8 毫米,对于 BDS-2 为 6-9 毫米,对于伽利略和 BDS-3/BDS-2 为 3-6 毫米。BDS-3与BDS-2相结合,BDS的定位精度仅比BDS-2提高50%。Galileo 和 BDS-3/BDS-2 的性能略好于 GPS,这可能是因为这两个最新的操作系统使用了更精确的无源氢脉泽时钟,并且具有更低的空间信号范围误差。GPS + Galileo + BDS-3/BDS-2 的多 GNSS 解决方案进一步提高了精度,达到 2-5 毫米。我们还确定了高速 PPP 位移中的比例因子,这可能是由动态应力误差引起的,并且与振荡频率有关。在 2 左右的振荡频率下,比例因子达到最大值 1.71。5 Hz,然后随着频率的增加而下降。最近BDS-3和Galileo增强了高速PPP的性能提高,有助于提高高速GNSS在地震大地测量中的实用水平,并将其应用扩展到许多其他高速高精度应用中。

更新日期:2021-08-24
down
wechat
bug