当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The experimental and numerical investigation on a hybrid battery thermal management system based on forced-air convection and internal finned structure
Applied Thermal Engineering ( IF 6.1 ) Pub Date : 2021-06-12 , DOI: 10.1016/j.applthermaleng.2021.117212
Peng Qin , Mengran Liao , Wenxi Mei , Jinhua Sun , Qingsong Wang

Thermal management is crucial for the lifespan and safety of lithium-ion batteries, especially for the electrochemical energy storage which is composed of thousands of battery cells. In this paper, a novel battery thermal management system (BTMS) with internal finned structure was first proposed based on forced-air convection for the cylindrical battery pack in the field of electrochemical energy storage. The proposed battery thermal management system combined the advantages of forced-air convection and internal finned structure, capable of well managing the maximum temperature and the maximum temperature of the cylindrical battery pack. The experimental results of this study revealed that the internal finned structure improved the temperature uniformity and forced-air convection reduced the maximum temperature. Even though the battery pack operated under the 4 C rate, the maximum temperature and the maximum temperature difference are well controlled below 48.5 ℃ and 4.8 ℃. Moreover, a mathematical model was established. After its results were validated by experiments, it was used to analyze the effect of the gap space, ambient temperature, and finned material on the cooling performance. The numerical findings provided insights into the application of the proposed battery thermal management system. In practice, the gap space of aluminum finned structure should be set as 4 mm, and the cycling rate should be no more than 3 C at ambient temperature over 25 °C.



中文翻译:

基于强制空气对流和内部翅片结构的混合电池热管理系统的实验和数值研究

热管理对于锂离子电池的寿命和安全性至关重要,尤其是对于由数千个电池单元组成的电化学储能。在本文中,首次提出了一种基于强制空气对流的具有内部翅片结构的新型电池热管理系统(BTMS),用于电化学储能领域的圆柱形电池组。所提出的电池热管理系统结合了强制空气对流和内部翅片结构的优点,能够很好地管理圆柱形电池组的最高温度和最高温度。本研究的实验结果表明,内部翅片结构提高了温度均匀性,强制空气对流降低了最高温度。即使电池组在4C倍率下运行,最高温度和最高温差也很好地控制在48.5℃和4.8℃以下。此外,还建立了数学模型。其结果经实验验证后,用于分析间隙空间、环境温度和翅片材料对冷却性能的影响。数值结果为所提出的电池热管理系统的应用提供了见解。在实践中,铝翅片结构的间隙间距应设置为4 mm,并且在环境温度超过25°C时循环速率应不超过3°C。其结果经实验验证后,用于分析间隙空间、环境温度和翅片材料对冷却性能的影响。数值结果为所提出的电池热管理系统的应用提供了见解。在实践中,铝翅片结构的间隙间距应设置为4 mm,并且在环境温度超过25°C时循环速率应不超过3°C。其结果经实验验证后,用于分析间隙空间、环境温度和翅片材料对冷却性能的影响。数值结果为所提出的电池热管理系统的应用提供了见解。在实践中,铝翅片结构的间隙间距应设置为4 mm,并且在环境温度超过25°C时循环速率应不超过3°C。

更新日期:2021-06-19
down
wechat
bug