当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assembly of multicomponent structures from hundreds of micron-scale building blocks using optical tweezers
Microsystems & Nanoengineering ( IF 7.9 ) Pub Date : 2021-06-12 , DOI: 10.1038/s41378-021-00272-z
Jeffrey E Melzer 1 , Euan McLeod 1
Affiliation  

The fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. In this study, an optical positioning and linking (OPAL) platform based on optical tweezers is used to precisely fabricate 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions. A computer-controlled interface with rapid on-the-fly automated recalibration routines maintains accuracy even after placing many building blocks. OPAL achieves a 60-nm positional accuracy by optimizing the molecular functionalization and laser power. A two-component structure consisting of 448 1-µm building blocks is assembled, representing the largest number of building blocks used to date in 3D optical tweezer microassembly. Although optical tweezers have previously been used for microfabrication, those results were generally restricted to single-material structures composed of a relatively small number of larger-sized building blocks, with little discussion of critical process parameters. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices.



中文翻译:

使用光镊从数百个微米级构建块组装多组件结构

三维 (3D) 微尺度结构的制造对于许多应用至关重要,包括坚固轻巧的材料开发、医疗设备制造、微型机器人和光子应用。虽然 3D 微制造在过去几十年中取得了进展,但具有小或分层特征尺寸的复杂多组件集成仍然是一个挑战。在这项研究中,基于光镊的光学定位和链接 (OPAL) 平台用于从通过生化相互作用连接的两种微米级构建块精确制造 3D 微结构。具有快速动态自动重新校准程序的计算机控制界面即使在放置许多构建块后也能保持准确性。OPAL 通过优化分子功能化和激光功率实现了 60 nm 的定位精度。组装了一个由 448 个 1-µm 积木组成的双组件结构,代表了迄今为止在 3D 光镊微组装中使用的最大数量的积木。尽管之前已将光镊用于微细加工,但这些结果通常仅限于由相对少量的较大尺寸构建块组成的单一材料结构,很少讨论关键工艺参数。预计 OPAL 将使由特殊微/纳米材料构建块组成的微结构的组装、增强和修复能够用于新的光子、微流体和生物医学设备。代表迄今为止在 3D 光镊微组件中使用的最大数量的构建块。尽管之前已将光镊用于微细加工,但这些结果通常仅限于由相对少量的较大尺寸构建块组成的单一材料结构,很少讨论关键工艺参数。预计 OPAL 将使由特殊微/纳米材料构建块组成的微结构的组装、增强和修复能够用于新的光子、微流体和生物医学设备。代表迄今为止在 3D 光镊微组件中使用的最大数量的构建块。尽管之前已将光镊用于微细加工,但这些结果通常仅限于由相对少量的较大尺寸构建块组成的单一材料结构,很少讨论关键工艺参数。预计 OPAL 将使由特殊微/纳米材料构建块组成的微结构的组装、增强和修复能够用于新的光子、微流体和生物医学设备。这些结果通常仅限于由数量相对较少的较大尺寸构建块组成的单一材料结构,很少讨论关键工艺参数。预计 OPAL 将使由特殊微/纳米材料构建块组成的微结构的组装、增强和修复能够用于新的光子、微流体和生物医学设备。这些结果通常仅限于由数量相对较少的较大尺寸构建块组成的单一材料结构,很少讨论关键工艺参数。预计 OPAL 将使由特殊微/纳米材料构建块组成的微结构的组装、增强和修复能够用于新的光子、微流体和生物医学设备。

更新日期:2021-06-13
down
wechat
bug