当前位置: X-MOL 学术Environ. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Developing a simple box–behnken experimental design on the removal of doxorubicin anticancer drug using Fe3O4/graphene nanoribbons adsorbent
Environmental Research ( IF 7.7 ) Pub Date : 2021-06-12 , DOI: 10.1016/j.envres.2021.111522
Abdolhossein Sadrnia 1 , Yasin Orooji 2 , Ali Behmaneshfar 3 , Rozhin Darabi 4 , Donya Maghsoudlou Kamali 5 , Hassan Karimi-Maleh 6 , Francis Opoku 7 , Penny Poomani Govender 7
Affiliation  

This paper aims to develop a Box–Behnken experimental design system to optimize the removal process of doxorubicin anticancer drugs. For this goal, FeO/graphene nanoribbons was selected as adsorbent and removal of doxorubicin anticancer drug optimized using Box–Behnken experimental design with a selection of four effective factors. A three-level, four-factor Box–Behnken experimental design was used to assess the relationship between removal percentage as a dependent variable with adsorption weight (0.0015–0.01 mg), pH (3–9), temperature (15–45 °C) and time (1–15 min) as independent variables. Optimized condition by Behnken experimental design (pH = 7.36; time = 15 min; adsorbent weight = 0.01 mg and temperature = 29.26 °C) improved removal of doxorubicin anticancer drug about 99.2% in aqueous solution. The dynamic behavior, adsorption properties and mechanism of doxorubicin molecule on FeO/graphene nanoribbon were investigated based on molecular dynamics (AIMD) simulations and density functional theory calculations with dispersion corrections. A closer inspection of the adsorption configurations and binding energies revealed that π-π interactions were the driving force when the doxorubicin molecule adsorbed on FeO/graphene nanoribbon. The observed negative adsorption energy signifies a favourable and exothermic adsorption process of the various adsorbate-substrate systems. Besides, AIMD and phonon dispersion calculations confirm the dynamic stability of FeO/graphene nanoribbon.

中文翻译:


使用 Fe3O4/石墨烯纳米带吸附剂开发去除阿霉素抗癌药物的简单箱式实验设计



本文旨在开发 Box-Behnken 实验设计系统来优化阿霉素抗癌药物的去除过程。为此,选择 Fe3O/石墨烯纳米带作为吸附剂,并使用 Box-Behnken 实验设计优化了阿霉素抗癌药物的去除,并选择了四个有效因素。采用三水平、四因素 Box–Behnken 实验设计来评估作为因变量的去除百分比与吸附重量 (0.0015–0.01 mg)、pH (3–9)、温度 (15–45 °C) 之间的关系)和时间(1-15 分钟)作为自变量。 Behnken 实验设计优化的条件(pH = 7.36;时间 = 15 分钟;吸附剂重量 = 0.01 mg,温度 = 29.26 °C)改善了水溶液中阿霉素抗癌药物的去除率约 99.2%。基于分子动力学(AIMD)模拟和色散校正的密度泛函理论计算,研究了阿霉素分子在 Fe3O/石墨烯纳米带上的动态行为、吸附性质和机制。对吸附构型和结合能的仔细检查表明,当阿霉素分子吸附在 Fe3O/石墨烯纳米带上时,π-π 相互作用是驱动力。观察到的负吸附能表明各种吸附物-底物系统的有利且放热的吸附过程。此外,AIMD和声子色散计算证实了Fe3O/石墨烯纳米带的动态稳定性。
更新日期:2021-06-12
down
wechat
bug