当前位置: X-MOL 学术J. Phys. Chem. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Maintaining superior crystallinity and conductivity in boron-doped nc-Si ultra-thin films by hydrogen plasma treatment
Journal of Physics and Chemistry of Solids ( IF 4 ) Pub Date : 2021-06-12 , DOI: 10.1016/j.jpcs.2021.110199
Chandralina Patra , Debajyoti Das

In view of using doped nanocrystalline Si (nc-Si) as the emitter layer in nc-Si/crystalline-Si heterojunction solar cells, a very thin (≤ 50 nm) emitter layer with high conductivity and superior crystallinity is optimum. In the present work, p-nc-Si:H thin film prepared in inductively coupled plasma chemical vapor deposition, without using additional H2-dilution in [SiH4 + B2H6 (1% in H2)]-plasma, retains conductivity ~10−1 S cm−1 and crystallinity ~68% at a low thickness (t) ~50 nm. The charge carrier transport through the heavily doped nc-Si network demonstrates reverse Meyer–Neldel characteristics for t ≥ 50 nm. However, with reduction to t < 50 nm, the evolution of the ultra-nanocrystalline dominated amorphous network, accompanied by accumulation of Si–H–Si platelet-like components in the grain boundary, leads to a drastic reduction in conductivity to 10−4 S cm−1. In this context, the post-deposition and short-time hydrogen plasma treatment (PSHPT) on the as-deposited ultra-thin (t ~30 nm) film becomes instrumental in substantially enhancing the crystallinity from 40% to 69% and increasing conductivity by two orders of magnitude to 10−2 S cm−1. The network modification by PSHPT proceeds via transformation of the surface and sub-surface weak bonds and is significant for the ultra-thin film compared to the thick film, due to retaining a superior surface-to-bulk ratio.



中文翻译:

通过氢等离子体处理在掺硼 nc-Si 超薄膜中保持优异的结晶度和导电性

鉴于在nc-Si/晶体-Si异质结太阳能电池中使用掺杂纳米晶Si(nc-Si)作为发射极层,具有高导电性和优异结晶度的非常薄(≤50nm)的发射极层是最佳的。在目前的工作中,p -nc-Si:H 薄膜在电感耦合等离子体化学气相沉积中制备,无需在 [SiH 4  + B 2 H 6 (H 2 中1% )]-等离子体中使用额外的 H 2 -稀释,保持电导率 ~10 -1  S cm -1在低厚度 (t) ~50 nm 下,结晶度 ~68%。通过重掺杂 nc-Si 网络的电荷载流子传输在 t ≥ 50 nm 时表现出反向 Meyer-Neldel 特性。然而,随着 t < 50 nm 的减少,超纳米晶主导的非晶网络的演变,伴随着晶界中 Si-H-Si 片状组分的积累,导致电导率急剧降低至 10 -4  S cm -1。在这种情况下,沉积后的超薄(t ~30 nm)薄膜上的沉积后和短时氢等离子体处理 (PSHPT) 有助于将结晶度从 40% 大幅提高到 69%,并将电导率提高两个数量级到 10 -2  S cm -1. PSHPT 的网络改性通过表面和亚表面弱键的转变进行,与厚膜相比,超薄膜具有重要意义,因为它保持了优异的表面与体积比。

更新日期:2021-06-17
down
wechat
bug