当前位置: X-MOL 学术Adv. Theor. Math. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Laplace transform approach to linear equations with infinitely many derivatives and zeta-nonlocal field equations
Advances in Theoretical and Mathematical Physics ( IF 1.0 ) Pub Date : 2019-01-01 , DOI: 10.4310/atmp.2019.v23.n7.a2
A. Chávez 1 , H. Prado 2 , E. G. Reyes 2
Affiliation  

We study existence, uniqueness and regularity of solutions for linear equations in infinitely many derivatives. We develop a natural framework based on Laplace transform as a correspondence between appropriate $L^p$ and Hardy spaces: this point of view allows us to interpret rigorously operators of the form $f(\partial_t)$ where $f$ is an analytic function such as (the analytic continuation of) the Riemann zeta function. We find the most general solution to the equation \begin{equation*} f(\partial_t) \phi = J(t) \; , \; \; \; t \geq 0 \; , \end{equation*} in a convenient class of functions, we define and solve its corresponding initial value problem, and we state conditions under which the solution is of class $C^k,\, k \geq 0$. More specifically, we prove that if some a priori information is specified, then the initial value problem is well-posed and it can be solved using only a {\em finite number} of local initial data. Also, motivated by some intriguing work by Dragovich and Aref'eva-Volovich on cosmology, we solve explicitly field equations of the form \begin{equation*} \zeta(\partial_t + h) \phi = J(t) \; , \; \; \; t \geq 0 \; , \end{equation*} in which $\zeta$ is the Riemann zeta function and $h > 1$. Finally, we remark that the $L^2$ case of our general theory allows us to give a precise meaning to the often-used interpretation of $f(\partial_t)$ as an operator defined by a power series in the differential operator $\partial_t$.

中文翻译:

具有无穷多导数的线性方程和 zeta 非局部场方程的拉普拉斯变换方法

我们研究无限多导数中线性方程解的存在性、唯一性和规律性。我们开发了一个基于拉普拉斯变换的自然框架,作为适当的 $L^p$ 和哈代空间之间的对应关系:这个观点允许我们严格解释 $f(\partial_t)$ 形式的运算符,其中 $f$ 是解析函数,例如黎曼 zeta 函数(的解析延拓)。我们找到方程 \begin{equation*} f(\partial_t) \phi = J(t) \; 的最通用解;, \; \; \; t \geq 0 \; , \end{equation*} 在一个方便的函数类中,我们定义并求解其对应的初值问题,并说明解属于类 $C^k,\, k \geq 0$ 的条件。更具体地说,我们证明如果指定了一些先验信息,那么初始值问题是适定的,它可以只使用一个 {\em 有限数} 的局部初始数据来解决。此外,受 Dragovich 和 Aref'eva-Volovich 在宇宙学方面的一些有趣工作的启发,我们明确地求解了 \begin{equation*} \zeta(\partial_t + h) \phi = J(t) \; 形式的场方程;, \; \; \; t \geq 0 \; , \end{equation*} 其中 $\zeta$ 是黎曼 zeta 函数且 $h > 1$。最后,我们注意到,我们的一般理论中的 $L^2$ 情况允许我们对 $f(\partial_t)$ 作为由微分算子 $ 中的幂级数定义的算子的常用解释给出精确的含义\partial_t$。我们明确求解形式为 \begin{equation*} \zeta(\partial_t + h) \phi = J(t) \; , \; \; \; t \geq 0 \; , \end{equation*} 其中 $\zeta$ 是黎曼 zeta 函数且 $h > 1$。最后,我们注意到,我们的一般理论中的 $L^2$ 情况允许我们对 $f(\partial_t)$ 作为由微分算子 $ 中的幂级数定义的算子的常用解释给出精确的含义\partial_t$。我们明确求解形式为 \begin{equation*} \zeta(\partial_t + h) \phi = J(t) \; , \; \; \; t \geq 0 \; , \end{equation*} 其中 $\zeta$ 是黎曼 zeta 函数且 $h > 1$。最后,我们注意到,我们的一般理论中的 $L^2$ 情况允许我们对 $f(\partial_t)$ 作为由微分算子 $ 中的幂级数定义的算子的常用解释给出精确的含义\partial_t$。
更新日期:2019-01-01
down
wechat
bug