当前位置: X-MOL 学术Am. J. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomistic to meso-scale modeling of mineral dissolution: Methods, challenges and prospects
American Journal of Science ( IF 1.9 ) Pub Date : 2020-01-01 , DOI: 10.2475/01.2020.02
Inna Kurganskaya , Ricarda D. Rohlfs

Dissolution and growth of minerals constitute a special interdisciplinary field covering a large variety of modern ecological and geochemical problems, for example, radioactive and toxic waste sequestration, weathering and biomineralization. The processes of mineral dissolution and growth are inherently complex. Formulation of a consistent theory applicable to arbitrary environmental conditions is a big goal for the geochemical community. This task cannot be fulfilled without a rigorous systematic methodological approach to create multi-scale models. We review current modeling approaches from atomistic to meso-scale as well as state-of-the-art approaches to connect these scales. Atomistic models provide us with molecular reaction rates and help us to explain mechanisms of bond dissociation, formation of transition state and adsorption complexes. Kinetic Monte Carlo (KMC) models incorporate an ensemble of different elementary reactions taking place at mineral surfaces. These stochastic models provide us with reaction sequences and corresponding surface topographies, as well as the geometry of reactive surface features. Experimental measurements provide important material for model verification. Environmental controls of the reaction process are incorporated into KMC models by using complementary Grand Canonical Monte Carlo (GCMC) simulations that provide statistics on charged sites and adsorbed ions. Reactive Canonical Monte Carlo constitutes an alternative approach to study mineral-fluid systems at chemical equilibrium. Analytical models of dissolution and growth based on atomic step velocities as functions on elementary rates and environmental conditions have been actively developed for decades. A novel, fast approach based on computational geometry, using Voronoi surface partitioning with non-Euclidean distance function, recently appeared. This approach allows us to simulate systems larger than what can be handled with atomistic methods and enables the possibility to upscale all-atomic meso-scale models to pore and continuum scales. The aim of this manuscript is to provide a road map of the existing vibrant field of atomistic-to-meso-scale models and computer simulations. We supplement the text with important equations quantitatively relating physical parameters involved in models at different scales. The discussion of existing methodological gaps and lack of parameters necessary for the construction of multi-scale models is provided.

中文翻译:

矿物溶解的原子到中尺度建模:方法、挑战和前景

矿物的溶解和生长构成了一个特殊的跨学科领域,涵盖了大量现代生态和地球化学问题,例如放射性和有毒废物的封存、风化和生物矿化。矿物溶解和生长的过程本质上是复杂的。制定适用于任意环境条件的一致理论是地球化学界的一大目标。如果没有严格的系统方法论方法来创建多尺度模型,就无法完成这项任务。我们回顾了从原子到中尺度的当前建模方法以及连接这些尺度的最先进方法。原子模型为我们提供了分子反应速率,并帮助我们解释键解离、过渡态形成和吸附复合物的机制。动力学蒙特卡罗 (KMC) 模型包含在矿物表面发生的不同基本反应的集合。这些随机模型为我们提供了反应序列和相应的表面形貌,以及反应表面特征的几何形状。实验测量为模型验证提供了重要的材料。通过使用互补的 Grand Canonical Monte Carlo (GCMC) 模拟将反应过程的环境控制纳入 KMC 模型,该模拟提供有关带电位点和吸附离子的统计数据。Reactive Canonical Monte Carlo 构成了一种在化学平衡下研究矿物流体系统的替代方法。基于原子步进速度作为基本速率和环境条件的函数的溶解和生长分析模型已经积极开发了几十年。最近出现了一种基于计算几何的新型快速方法,使用具有非欧几里德距离函数的 Voronoi 表面分区。这种方法使我们能够模拟比原子方法可以处理的系统更大的系统,并能够将全原子中尺度模型升级到孔隙和连续体尺度。这份手稿的目的是为现有的原子到中尺度模型和计算机模拟的充满活力的领域提供路线图。我们用重要的方程补充了文本,这些方程定量地关联了不同尺度模型中涉及的物理参数。
更新日期:2020-01-01
down
wechat
bug