当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle
Science ( IF 56.9 ) Pub Date : 2021-06-11 , DOI: 10.1126/science.abg2371
Bryan H. R. Suryanto 1 , Karolina Matuszek 1 , Jaecheol Choi 1, 2 , Rebecca Y. Hodgetts 1, 2 , Hoang-Long Du 1, 2 , Jacinta M. Bakker 1, 2 , Colin S. M. Kang 1, 2 , Pavel V. Cherepanov 1 , Alexandr N. Simonov 1, 2 , Douglas R. MacFarlane 1, 2
Affiliation  

Ammonia (NH3) is a globally important commodity for fertilizer production, but its synthesis by the Haber-Bosch process causes substantial emissions of carbon dioxide. Alternative, zero-carbon emission NH3 synthesis methods being explored include the promising electrochemical lithium-mediated nitrogen reduction reaction, which has nonetheless required sacrificial sources of protons. In this study, a phosphonium salt is introduced as a proton shuttle to help resolve this limitation. The salt also provides additional ionic conductivity, enabling high NH3 production rates of 53 ± 1 nanomoles per second per square centimeter at 69 ± 1% faradaic efficiency in 20-hour experiments under 0.5-bar hydrogen and 19.5-bar nitrogen. Continuous operation for more than 3 days is demonstrated.



中文翻译:

基于鏻质子穿梭机以高效率和速率将氮还原为氨

氨 (NH 3 ) 是一种全球重要的肥料生产商品,但其通过 Haber-Bosch 工艺合成会导致大量二氧化碳排放。正在探索的替代性零碳排放 NH 3合成方法包括有前途的电化学锂介导的氮还原反应,但该反应需要牺牲质子源。在这项研究中,鏻盐作为质子穿梭被引入,以帮助解决这一限制。该盐还提供额外的离子电导率,使高 NH 3在 0.5 巴氢气和 19.5 巴氮气下的 20 小时实验中,在 69 ± 1% 法拉第效率下,每平方厘米每秒的生产速率为 53 ± 1 纳摩尔。证明连续运行超过 3 天。

更新日期:2021-06-11
down
wechat
bug