当前位置: X-MOL 学术J. Civil Struct. Health Monit. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Detecting, localizing, and quantifying damage using two-dimensional sensing sheet: lab test and field application
Journal of Civil Structural Health Monitoring ( IF 3.6 ) Pub Date : 2021-06-11 , DOI: 10.1007/s13349-021-00498-5
Vivek Kumar , Bianca Acot , Levent E. Aygun , Sigurd Wagner , Naveen Verma , James Sturm , Branko Glisic

Damage to structures in the form of cracks could reduce safety and induce high maintenance cost. Structural health monitoring (SHM) is increasingly employed to detect damage in the structure and inform the stakeholders in a timely manner to allow rehabilitation actions. Reliable crack detection, localization, and quantification are, hence, extremely important. To achieve this goal, a dense network of sensors is often required. Damages even a meter away from sensors are often unable to be detected reliably by a sensing system. Creating a dense network of sensors using the commonly used point sensors (e.g., strain gages) or distributed one-dimensional sensors (e.g., fiber-optic sensors) is expensive and often practically impossible. Sensing sheet is a distributed two-dimensional thin-film sensor comprising of a dense array of resistive strain gage units developed at Princeton University. Based on the principles of large-area electronics (LAE), this thin-film sensor provides an affordable solution to reliably detect and localize damage. This paper derives analytical models for damage detection, localization, and quantification based on sensing sheet. Laboratory experiments are performed by creating artificial damage to verify these models and highlight their uses. Further, the damage quantification algorithm is used to estimate the crack opening in a shrinkage crack on the foundation of the pedestrian bridge at Princeton University. Finally, the results and future research directions are discussed.



中文翻译:

使用二维传感片检测、定位和量化损坏:实验室测试和现场应用

裂缝形式的结构损坏会降低安全性并导致高昂的维护成本。越来越多地采用结构健康监测 (SHM) 来检测结构中的损坏并及时通知利益相关者以允许采取修复行动。因此,可靠的裂纹检测、定位和量化非常重要。为了实现这一目标,通常需要密集的传感器网络。传感系统通常无法可靠地检测到距离传感器一米远的损坏。使用常用的点传感器(例如,应变计)或分布式一维传感器(例如,光纤传感器)创建密集的传感器网络是昂贵的并且通常实际上是不可能的。传感片是一种分布式二维薄膜传感器,由普林斯顿大学开发的电阻应变计单元的密集阵列组成。基于大面积电子学 (LAE) 的原理,这种薄膜传感器提供了一种经济实惠的解决方案,可以可靠地检测和定位损坏。本文基于传感片推导出用于损伤检测、定位和量化的分析模型。实验室实验是通过创建人工损伤来验证这些模型并突出其用途的。此外,使用损伤量化算法来估计普林斯顿大学人行天桥地基收缩裂缝中的裂缝开口。最后,讨论了结果和未来的研究方向。基于大面积电子学 (LAE) 的原理,这种薄膜传感器提供了一种经济实惠的解决方案,可以可靠地检测和定位损坏。本文基于传感片推导出用于损伤检测、定位和量化的分析模型。实验室实验是通过创建人工损伤来验证这些模型并突出其用途的。此外,使用损伤量化算法来估计普林斯顿大学人行天桥地基收缩裂缝中的裂缝开口。最后,讨论了结果和未来的研究方向。基于大面积电子学 (LAE) 的原理,这种薄膜传感器提供了一种经济实惠的解决方案,可以可靠地检测和定位损坏。本文基于传感片推导出用于损伤检测、定位和量化的分析模型。实验室实验是通过创建人工损伤来验证这些模型并突出其用途的。此外,使用损伤量化算法来估计普林斯顿大学人行天桥地基收缩裂缝中的裂缝开口。最后,讨论了结果和未来的研究方向。实验室实验是通过创建人工损伤来验证这些模型并突出其用途来进行的。此外,使用损伤量化算法来估计普林斯顿大学人行天桥地基收缩裂缝中的裂缝开口。最后,讨论了结果和未来的研究方向。实验室实验是通过创建人工损伤来验证这些模型并突出其用途的。此外,使用损伤量化算法来估计普林斯顿大学人行天桥地基收缩裂缝中的裂缝开口。最后,讨论了结果和未来的研究方向。

更新日期:2021-06-11
down
wechat
bug