当前位置: X-MOL 学术Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adsorption of nitrogen at AlN(000-1) surface – decisive role of structural and electronic factors
Surface Science ( IF 2.1 ) Pub Date : 2021-06-11 , DOI: 10.1016/j.susc.2021.121891
Pawel Strak , Konrad Sakowski , Jacek Piechota , Ashfaq Ahmad , Izabella Grzegory , Yoshihiro Kangawa , Stanislaw Krukowski

Adsorption of atomic and molecular nitrogen at AlN(000-1) surface was investigated by ab initio calculations and thermodynamic analysis. According to earlier works{Kempisty et al. Appl. Surf. Sci. 2020, 532, 147719} in equilibrium with Al vapor, the AlN(000-1) surface is thermodynamically stable in two states: low Al coverage θAl ≤ 1/3 ML and high Al coverageθAl ≅ 1 ML. In these two cases nitrogen adsorption is completely different. At low Al-covered surface the nitrogen atom is strongly bounded to N surface atom, creates the N2 admolecule that is finally detached leaving surface vacancy VN(s). This reaction chain energy gain is positive, ΔEDFTdet(NN2)=3.50eV. Therefore, the atomic nitrogen present in plasma assisted molecular beam epitaxy (PA-MBE) fluxes induces the surface decay. N2 is adsorbed molecularly at the bare surface with the coverage independent energy gain about 1 eV. At the fully Al-covered surface atomic nitrogen is adsorbed in T4 sites with no barrier and large energy gain ΔEDFTadsAl(N)=8.68eV. Molecular nitrogen dissociates with the energy gain, dependent on additional N coverage: ΔEDFTadsAl(N2)=7.65eV at low and ΔEDFTadsAl(N2)=2.77eV at high, respectively. This change is related to the reduction of electron transfer contribution, caused by Fermi level shift down due to electron transfer from Al to N surface states. The thermodynamic analysis shows incomplete N coverage above the adsorbed Al layer due to the above adsorption energy reduction effect. The resulting incomplete N coverage is responsible for creation of nitrogen vacancies during AlN physical vapor transport (PVT) growth and their coalescence into Al-rich inclusions.



中文翻译:

氮在 AlN(000-1) 表面的吸附——结构和电子因素的决定性作用

通过从头算计算和热力学分析研究了原子和分子氮在 AlN(000-1) 表面的吸附。根据早期的作品{Kempisty et al. 应用程序 冲浪。科学。 2020 , 532, 147719} 与 Al 蒸气平衡时,AlN(000-1) 表面在两种状态下热力学稳定:低 Al 覆盖率 θ Al ≤ 1/3  ML和高 Al 覆盖率θ Al  ≅ 1  ML。在这两种情况下,氮吸附是完全不同的。在低铝覆盖的表面,氮原子与 N 表面原子紧密结合,产生 N 2分子,最终脱离,留下表面空位 V N ( s)。这个反应链能量增益是正的,ΔDFd电子(N-N2)=3.50电子. 因此,等离子体辅助分子束外延 (PA-MBE) 通量中存在的原子氮会引起表面衰减。N 2分子吸附在裸露表面,与覆盖无关的能量增益约为1 eV。在完全铝覆盖的表面原子氮吸附在 T4 位点,没有势垒和大的能量增益ΔDF一种d-一种(N)=8.68电子. 分子氮与能量增益解离,取决于额外的氮覆盖:ΔDF一种d-一种(N2)=7.65电子 在低和 ΔDF一种d-一种(N2)=2.77电子在高,分别。这种变化与电子转移贡献的减少有关,这是由于电子从 Al 表面态转移到 N 表面态导致的费米能级下降引起的。热力学分析表明,由于上述吸附能降低效应,吸附的 Al 层上方的 N 覆盖不完全。由此产生的不完整的 N 覆盖是在 AlN 物理蒸汽传输 (PVT) 生长过程中产生氮空位的原因,并且它们合并成富含铝的夹杂物。

更新日期:2021-06-11
down
wechat
bug