当前位置: X-MOL 学术IEEE Trans. Plasma Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Particle-in-Cell Simulation of Phase-Shift and Faraday Rotation in Interferometry-Polarimetry Diagnostic Device of ITER Fusion Plasma
IEEE Transactions on Plasma Science ( IF 1.5 ) Pub Date : 2021-05-26 , DOI: 10.1109/tps.2021.3080988
Mohammad Ali Asgarian , Fatemeh Azizi Ghahfarokhi

Kinetic particle-in-cell (PIC) method is a reliable technique for the laser–plasma interactions simulation based on particles’ statistical behavior. This method can be applied in simulating physical phenomena involved in optical diagnostics tools, such as the interferometry-polarimetry (IP) system. IP is one of the significant laser diagnostic methods suggested in the large tokamaks, such as international thermonuclear experimental reactor (ITER), as to improve the accuracy of density and magnetic field measurements. In this article, two separate simulations of the poloidal IP system are run by applying a 2-D/3-V XOOPIC code to observe the phase-shift and Faraday effect in a magnetized plasma with input density and poloidal magnetic field of ${n}_{e} =3.00\times 10^{19}\,\,\mathrm {m}^{-3}$ and ${B}_{p}=1.00$ T, respectively. For this purpose, a gaseous $\mathrm {(CO}_{2})$ linear-polarized far-infrared laser beam of $\boldsymbol {\lambda }_{i}=118\,\,\mu \text{m}$ wavelength, and about ${30}~{\text {W}}/ {\text {m}}^{2}$ intensity is passed through the plasma, parallel to the magnetic field. The density and poloidal magnetic field are computed from laser phase-shift and Faraday rotation theories, at ${n}_{e,\text {com}}=2.99\times {10}^{19}\,\,\text {m}^{-3}$ and ${B}_{p,\text {com}}=0.99$ T, which correspond to the input values of these simulations. The obtained results indicate the competence and potency of the PIC method in simulating role-playing phenomena in ITER diagnostic devices like the IP system.

中文翻译:

ITER聚变等离子体干涉-旋光诊断装置相移和法拉第旋转的细胞内粒子模拟

动力学粒子胞内 (PIC) 方法是一种可靠的基于粒子统计行为的激光-等离子体相互作用模拟技术。该方法可用于模拟光学诊断工具中涉及的物理现象,例如干涉测量-偏振 (IP) 系统。IP 是国际热核实验反应堆 (ITER) 等大型托卡马克中建议的重要激光诊断方法之一,以提高密度和磁场测量的准确性。在本文中,通过应用 2-D/3-V XOOPIC 代码来运行极向 IP 系统的两个独立模拟,以观察输入密度和极向磁场为 的磁化等离子体中的相移和法拉第效应 ${n}_{e} =3.00\times 10^{19}\,\,\mathrm {m}^{-3}$ ${B}_{p}=1.00$ 分别为 T。为此,气态 $\mathrm {(CO}_{2})$ 线偏振远红外激光束 $\boldsymbol {\lambda }_{i}=118\,\,\mu \text{m}$ 波长和大约 ${30}~{\text {W}}/ {\text {m}}^{2}$ 强度通过等离子体,平行于磁场。密度和极向磁场由激光相移和法拉第旋转理论计算,在 ${n}_{e,\text {com}}=2.99\times {10}^{19}\,\,\text {m}^{-3}$ ${B}_{p,\text {com}}=0.99$ T,对应于这些模拟的输入值。获得的结果表明 PIC 方法在模拟 ITER 诊断设备(如 IP 系统)中的角色扮演现象方面的能力和效力。
更新日期:2021-06-11
down
wechat
bug