当前位置: X-MOL 学术IEEE Trans. Plasma Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
2-D Simulation of the Electron Density Characteristics of a Special Plasma Device
IEEE Transactions on Plasma Science ( IF 1.3 ) Pub Date : 2021-05-26 , DOI: 10.1109/tps.2021.3079340
Weifeng Deng , Yanming Liu , Jia Zhang , Min Yang , Wenchong Ouyang

The purpose of this article is to study the influence of different powers, pressures, frequencies, and gases on the electron density distribution in special structures. A simulation model is established, and the electronic density in a special capacitance coupled plasma (CCP) device is calculated over the power range of 0-10 kW, pressure range of 0-50 Pa, and frequency range of 13.56-300 MHz. The results show that the power is a logarithmic function of the electron density in helium and argon plasmas, and the peak value for the electron density occurs in the diffusion region. At a certain power, collisions between particles increase with increasing pressure, which leads to an increase in electron density. However, the high electron density region in the helium plasma is concentrated near the electrode, while the high density region in the argon plasma moves from the center of the device to the electrode with increasing gas pressure. At the same time, the increase in the power frequency increases the ionization rate, and energy is transferred to the electrons, which increases the electron density. However, the rate of increase in the electron density decreases with increasing power frequency at the same voltage and pressure. With increasing power frequency, the 2-D electron density distribution in the argon and helium plasmas is found to vary in a similar way to that found for increasing pressure.

中文翻译:


特殊等离子体器件电子密度特性的二维模拟



本文的目的是研究不同功率、压力、频率和气体对特殊结构中电子密度分布的影响。建立仿真模型,计算了一种特殊电容耦合等离子体(CCP)器件在0~10 kW功率范围、0~50 Pa压力范围、13.56~300 MHz频率范围内的电子密度。结果表明,氦和氩等离子体中的功率是电子密度的对数函数,并且电子密度的峰值出现在扩散区。在一定功率下,粒子之间的碰撞随着压力的增加而增加,从而导致电子密度的增加。然而,氦等离子体中的高电子密度区域集中在电极附近,而氩等离子体中的高密度区域随着气压的增加从器件中心移动到电极。同时,电源频率的增加使电离率增加,能量转移给电子,从而增加了电子密度。然而,在相同电压和压力下,电子密度的增加速率随着电源频率的增加而减小。随着功率频率的增加,氩和氦等离子体中的二维电子密度分布的变化方式与压力增加时的变化方式类似。
更新日期:2021-05-26
down
wechat
bug