当前位置: X-MOL 学术J. Non Equilib. Thermodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Efficiency of Electrochemical Devices from the Perspective of Endoreversible Thermodynamics
Journal of Non-Equilibrium Thermodynamics ( IF 6.6 ) Pub Date : 2019-10-25 , DOI: 10.1515/jnet-2018-0076
Frantisek Marsik 1 , Bernhard Weigand 2 , Martin Tomas 1 , Ondrej Tucek 1 , Pavel Novotny 1, 2
Affiliation  

Abstract The current work presents a concept that deals with the production of entropy generated by non-equilibrium processes in consequence of mass and energy transfer. The often used concept of endoreversible thermodynamics is based on the non-realistic conjecture that the entire entropy production is realized at the system boundary. In this contribution, an open system in a thermodynamically non-equilibrium state is assumed. Production of entropy is generated due to non-equilibrium processes accompanied by energy conversion. The steady state of the system is maintained by a negative entropy flux. The conclusions for expansion energy conversion, i. e., thermal machines, confirm the general outcomes of the endoreversible thermodynamics. However, the presented conclusions related to non-expansion energy conversion offer a new perspective on the principle of minimum entropy production and the corresponding stability conditions at steady state. The analysis of the energy conversion in closed cycles is presented for fuel cells, i. e., non-expansion energy conversion. The efficiency of the energy conversion is maximal at zero power output. Moreover, the efficiency of the fuel cells, and consequently the efficiency of all non-expansion energy conversion processes, depends on the load and then the maximal possible efficiency can be determined.

中文翻译:

从内可逆热力学看电化学装置的效率

摘要 当前的工作提出了一个概念,该概念涉及由于质量和能量转移而由非平衡过程产生的熵的产生。经常使用的内可逆热力学概念是基于整个熵产生是在系统边界实现的不切实际的猜想。在这个贡献中,假设了一个处于热力学非平衡状态的开放系统。熵的产生是由于伴随能量转换的非平衡过程而产生的。系统的稳态由负熵通量维持。膨胀能量转换的结论,i.例如,热机,确认了可逆热力学的一般结果。然而,与非膨胀能量转换相关的结论为最小熵产生原理和稳态下的相应稳定条件提供了新的视角。提出了燃料电池在封闭循环中的能量转换分析,即。e.,非膨胀能量转换。能量转换效率在零功率输出时最大。此外,燃料电池的效率以及所有非膨胀能量转换过程的效率取决于负载,然后可以确定最大可能效率。能量转换效率在零功率输出时最大。此外,燃料电池的效率以及所有非膨胀能量转换过程的效率取决于负载,然后可以确定最大可能效率。能量转换效率在零功率输出时最大。此外,燃料电池的效率以及所有非膨胀能量转换过程的效率取决于负载,然后可以确定最大可能效率。
更新日期:2019-10-25
down
wechat
bug