当前位置: X-MOL 学术J. Big Data › 论文详情
A distributed Content-Based Video Retrieval system for large datasets
Journal of Big Data Pub Date : 2021-06-09 , DOI: 10.1186/s40537-021-00479-x
El Mehdi Saoudi, Said Jai-Andaloussi

With the rapid growth in the amount of video data, efficient video indexing and retrieval methods have become one of the most critical challenges in multimedia management. For this purpose, Content-Based Video Retrieval (CBVR) is nowadays an active area of research. In this article, a CBVR system providing similar videos from a large multimedia dataset based on query video has been proposed. This approach uses vector motion-based signatures to describe the visual content and uses machine learning techniques to extract key frames for rapid browsing and efficient video indexing. The proposed method has been implemented on both single machine and real-time distributed cluster to evaluate the real-time performance aspect, especially when the number and size of videos are large. Experiments were performed using various benchmark action and activity recognition datasets and the results reveal the effectiveness of the proposed method in both accuracy and processing time compared to previous studies.



中文翻译:

一种用于大型数据集的分布式基于内容的视频检索系统

随着视频数据量的快速增长,高效的视频索引和检索方法已成为多媒体管理中最关键的挑战之一。为此,基于内容的视频检索 (CBVR) 是当今一个活跃的研究领域。在本文中,提出了一种基于查询视频从大型多媒体数据集中提供相似视频的 CBVR 系统。这种方法使用基于矢量运动的签名来描述视觉内容,并使用机器学习技术提取关键帧以实现快速浏览和高效视频索引。所提出的方法已在单机和实时分布式集群上实现,以评估实时性能方面,尤其是在视频数量和大小较大时。

更新日期:2021-06-10
全部期刊列表>>
virulence
欢迎新作者ACS
中国作者高影响力研究精选
虚拟特刊
屿渡论文,编辑服务
浙大
上海中医药大学
深圳大学
上海交通大学
南方科技大学
浙江大学
清华大学
徐晶
张大卫
彭孝军
北京大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug