当前位置: X-MOL 学术Ramanujan J. › 论文详情
Results on vanishing coefficients in infinite q-series expansions for certain arithmetic progressions mod 7
The Ramanujan Journal ( IF 0.790 ) Pub Date : 2021-06-10 , DOI: 10.1007/s11139-021-00430-x
Mandeep Kaur, Vandna

Recently, Mc Laughlin proved some results on vanishing coefficients in the series expansions of certain infinite q-products for arithmetic progressions modulo 5, modulo 7 and modulo 11 by grouping the results into several families. In this paper, we prove some new results on vanishing coefficients for arithmetic progressions modulo 7, which are not listed by Mc Laughlin. For example, we prove that if \(t \in \{1,2,3\}\) and the sequence \(\{A_n\}\) is defined by \(\sum _{n=0}^{\infty }A_nq^n := (-q^t,-q^{7-t};q^7)_{\infty }(q^{7-2t},q^{7+2t};q^{14})^3_{\infty },\) then \(A_{7n+4t}=A_{7n+6t^2+4t}=0\) for all n. Also, we prove four families of results with negative signs for arithmetic progressions modulo 7 classified by Mc Laughlin.



中文翻译:

某些等差数列 mod 7 的无限 q 级数展开式中消失系数的结果

最近,Mc Laughlin通过将结果分成几类,证明了对等差数列模 5、模 7 和模 11的某些无穷q积的级数展开式中消失系数的一些结果。在本文中,我们证明了Mc Laughlin未列出的模7等差数列消失系数的一些新结果。例如,我们证明如果\(t \in \{1,2,3\}\)和序列\(\{A_n\}\)定义为\(\sum _{n=0}^{ \infty }A_nq^n := (-q^t,-q^{7-t};q^7)_{\infty }(q^{7-2t},q^{7+2t};q ^{14})^3_{\infty },\)然后\(A_{7n+4t}=A_{7n+6t^2+4t}=0\)对于所有n. 此外,我们证明了由 Mc Laughlin 分类的算术级数模 7 的四个带负号的结果族。

更新日期:2021-06-10
全部期刊列表>>
virulence
欢迎新作者ACS
中国作者高影响力研究精选
虚拟特刊
屿渡论文,编辑服务
浙大
上海中医药大学
深圳大学
上海交通大学
南方科技大学
浙江大学
清华大学
徐晶
张大卫
彭孝军
北京大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
华辉
天合科研
x-mol收录
试剂库存
down
wechat
bug