当前位置: X-MOL 学术Struct. Multidisc. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topology optimization of microvascular composites for active-cooling applications using a geometrical reduced-order model
Structural and Multidisciplinary Optimization ( IF 3.6 ) Pub Date : 2021-06-09 , DOI: 10.1007/s00158-021-02951-x
Reza Pejman , Ole Sigmund , Ahmad Raeisi Najafi

In this study, we develop a design methodology with a basis in gradient-based topology optimization and a geometrical reduced-order thermal/hydraulic model for actively cooled microvascular composite panels. The proposed method is computationally very efficient owing to the suggested simplifications while preserving the required accuracy. The analytical sensitivity for the topology optimization scheme is derived. Several numerical examples are solved to demonstrate the applicability of the proposed method for active-cooling applications. Using topology optimization, the maximum temperature of the composite panel is reduced by up to 59% compared to a benchmark design. The optimization framework is compared to hybrid topology/shape (HyTopS) and shape optimization (SO) methods based on several measures such as maximum and average temperatures, temperature uniformity, network redundancy, and manufacturability. The solution obtained from the proposed TO scheme outperforms the other approaches in terms of the aforementioned measures.



中文翻译:

用于主动冷却应用的微血管复合材料拓扑优化使用几何降阶模型

在这项研究中,我们开发了一种以基于梯度的拓扑优化和几何降阶热/水力模型为基础的设计方法,用于主动冷却微血管复合板。由于建议的简化同时保持所需的精度,所提出的方法在计算上非常有效。推导出拓扑优化方案的分析灵敏度。解决了几个数值例子,以证明所提出的方法对主动冷却应用的适用性。使用拓扑优化,与基准设计相比,复合板的最高温度降低了 59%。优化框架与混合拓扑/形状 (HyTopS) 和形状优化 (SO) 方法进行了比较,该方法基于多种度量,例如最高和平均温度、温度均匀性、网络冗余和可制造性。从所提出的 TO 方案中获得的解决方案在上述措施方面优于其他方法。

更新日期:2021-06-09
down
wechat
bug