当前位置: X-MOL 学术Nucl. Fusion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Examination of stiff ion temperature gradient mode physics in simulations of DIII-D H-mode transport
Nuclear Fusion ( IF 3.5 ) Pub Date : 2021-05-25 , DOI: 10.1088/1741-4326/abf951
C. Holland 1 , T.C. Luce 2 , B.A. Grierson 3 , S.P. Smith 4 , A. Marinoni 5 , K.H. Burrell 4 , C.C. Petty 4 , E.M. Bass 1
Affiliation  

A systematic evaluation of gyrokinetic and gyrofluid model predictions of ion temperature gradient (ITG) stability and transport using parameters from DIII-D high confinement mode (H-mode) plasmas has been performed. The nonlinear CGYRO code is used to make the gyrokinetic predictions, and the quasilinear TGLF model for the corresponding gyrofluid predictions. The assessments are made at three radii (normalized toroidal flux ρ tor = 0.4, 0.55, and 0.7) in three different plasma scenarios with varying levels of neutral beam heating and torque. For each of the nine cases (3 radii 3 scenarios) considered, ITG turbulence is found to be the dominant long-wavelength instability and transport mechanism. The inclusions of both transverse magnetic fluctuations and dynamic fast beam ions are stabilizing for all cases considered, with strongest effects seen at ρ or = 0.4 where the fast ion population and normalized plasma pressure β = 2μ 0 nT/B 2 are highest. The further inclusion of parallel magnetic fluctuations does not have a meaningful impact on the ITG turbulence in these scenarios, but does destabilize (in combination with fast ions) new high-frequency instabilities at ρ tor = 0.4 in the high power scenarios. In each case the linear and nonlinear ITG critical gradients are predicted to be lower than the measured ITG scale lengths and their associated uncertainties. Inclusion of equilibrium flow shear in the transport predictions generally leads to an upshift in effective critical gradient rather than a qualitative change in the predicted stiffness, with stronger responses typically seen in the gyrokinetic predictions than in the gyrofluid results. However, in most cases these upshifted gradients still remain below the measured values and their uncertainties. Although the predicted critical gradients are below the measured gradients, both models predicted flux-matching gradients consistent with measured values in six of the nine cases considered, with no clear systematic over- or underprediction. Thus, while the experimental ion temperature profiles do not appear to be closely pinned to the ITG critical gradient, both gyrokinetic and gyrofluid models are able to accurately match the measured gradients reasonably well in most cases.



中文翻译:

在 DIII-D H 模式传输模拟中检查刚性离子温度梯度模式物理

使用来自 DIII-D 高限制模式(H 模式)等离子体的参数,对离子温度梯度 (ITG) 稳定性和传输的陀螺动力学和陀螺流体模型预测进行了系统评估。非线性 CGYRO 代码用于进行陀螺动力学预测,拟线性 TGLF 模型用于相应的陀螺流体预测。评估是在三个半径(归一化环形通量ρ tor= 0.4、0.55 和 0.7)在三种不同的等离子体场景中,具有不同水平的中性束加热和扭矩。对于所考虑的九种情况(3 种半径 3 种情况)中的每一种,发现 ITG 湍流是主要的长波长不稳定性和传输机制。横向磁波动和动态快速束离子的内含物在所有考虑的情况下都是稳定的,在ρ = 0.4 处看到最强的影响,其中快速离子数量和归一化等离子体压力β = 2 μ 0 nT / B 2是最高的。在这些情况下,平行磁涨落的进一步包含不会对 ITG 湍流产生有意义的影响,但确实会破坏(与快离子结合)在ρ tor处的新高频不稳定性= 0.4 在高功率场景中。在每种情况下,线性和非线性 ITG 临界梯度预计低于测得的 ITG 标度长度及其相关不确定性。在传输预测中包含平衡流剪切通常会导致有效临界梯度的上移,而不是预测刚度的质变,在陀螺动力学预测中通常会看到比陀螺流体结果更强的响应。然而,在大多数情况下,这些上移的梯度仍然低于测量值及其不确定性。尽管预测的临界梯度低于测量的梯度,但两个模型预测的通量匹配梯度与所考虑的九种情况中的六种的测量值一致,没有明显的系统高估或低估。因此,

更新日期:2021-05-25
down
wechat
bug