当前位置: X-MOL 学术Chin. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly Robust Reentrant Superconductivity in CsV3Sb5 under Pressure
Chinese Physics Letters ( IF 3.5 ) Pub Date : 2021-06-03 , DOI: 10.1088/0256-307x/38/5/057402
Xu Chen 1 , Xinhui Zhan 2 , Xiaojun Wang 2 , Jun Deng 1 , Xiao-Bing Liu 2 , Xin Chen 2 , Jian-Gang Guo 1, 3 , Xiaolong Chen 1, 3
Affiliation  

We present the superconducting (SC) property and high-robustness of structural stability of kagome CsV3Sb5 under in situ high pressures. For the initial SC-I phase, its T c is quickly enhanced from 3.5 K to 7.6 K and then totally suppressed at P ∼ 10 GPa. With further increasing pressure, an SC-II phase emerges at P ∼ 15 GPa and persists up to 100 GPa. The T c rapidly increases to the maximal value of 5.2 K at P = 53.6 GPa and slowly decreases to 4.7 K at P = 100 GPa. A two-dome-like variation of T c in CsV3Sb5 is concluded here. The Raman measurements demonstrate that weakening of E 2g mode and strengthening of E 1g mode occur without phase transition in the SC-II phase, which is supported by the results of phonon spectra calculations. Electronic structure calculations reveal that exertion of pressure may bridge the gap of topological surface nontrivial states near E F, i.e., disappearance of Z 2 invariant. Meanwhile, the Fermi surface enlarges significantly, consistent with the increased carrier density. The findings here suggest that the change of electronic structure and strengthened electron-phonon coupling should be responsible for the pressure-induced reentrant SC.



中文翻译:

压力下 CsV3Sb5 中高度鲁棒的可重入超导性

我们展示了kagome CsV 3 Sb 5原位高压下的超导(SC)特性和结构稳定性的高稳健性。对于最初的 SC-I 阶段,其T c从 3.5 K 迅速提高到 7.6 K,然后在P ∼ 10 GPa 时完全被抑制。随着压力的进一步增加,SC-II 相出现在P ~15 GPa 并持续到 100 GPa。T cP = 53.6 GPa时迅速增加到最大值 5.2 K,在P = 100 GPa时缓慢降低到 4.7 K。CsV 3 Sb中T c的两个圆顶状变化5到此结束。拉曼测量表明,E 2g模式的减弱和E 1g模式的加强在 SC-II 相中没有相变,这得到了声子光谱计算结果的支持。电子结构计算表明,施加压力可以弥合E F附近拓扑表面非平凡状态的间隙,即Z 2不变量的消失。同时,费米面显着扩大,与增加的载流子密度一致。这里的研究结果表明,电子结构的变化和增强的电子 - 声子耦合应该是压力诱导的重入 SC 的原因。

更新日期:2021-06-03
down
wechat
bug