当前位置: X-MOL 学术Chin. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spin-Wave Dynamics in an Artificial Kagome Spin Ice
Chinese Physics Letters ( IF 3.5 ) Pub Date : 2021-05-24 , DOI: 10.1088/0256-307x/38/4/047501
Qiuyang Li 1 , Suqin Xiong 1 , Lina Chen 2 , Kaiyuan Zhou 3 , Rongxin Xiang 3 , Haotian Li 3 , Zhenyu Gao 3 , Ronghua Liu 3 , Youwei Du 3
Affiliation  

Artificial spin ice (ASI) structures have significant technological potential as reconfigurable metamaterials and magnetic storage media. We investigate the field/frequency-dependent magnetic dynamics of a kagome ASI made of 25-nm-thick permalloy nanomagnet elements, combining magnetoresistance (MR) and microscale ferromagnetic resonance (FMR) techniques. Our FMR spectra show a broadband absorption spectrum from 0.2 GHz to 3 GHz at H below 0.3 kOe, where the magnetic configuration of the kagome ASI is in the multidomain state, because the external magnetic field is below the obtained coercive field H c ∼ 0.3 kOe, based on both the low-field range MR loops and simulations, suggesting that the low-field magnetization dynamics of kagome ASI is dominated by a multimode resonance regime. However, the FMR spectra exhibit five distinctive resonance modes at the high-field quasi-uniform magnetization state. Furthermore, our micromagnetic simulations provide additional spatial resolution of these resonance modes, identifying the presence of two high-frequency primary modes, localized in the horizontal and vertical bars of the ASI, respectively; three other low-frequency modes are mutually exclusive and separately pinned at the corners of the kagome ASI by an edge-induced dipolar field. Our results suggest that an ASI structural design can be adopted as an efficient approach for the development of low-power filters and magnonic devices.



中文翻译:

人工 Kagome 自旋冰中的自旋波动力学

人工自旋冰 (ASI) 结构作为可重构超材料和磁存储介质具有巨大的技术潜力。我们研究了由 25 纳米厚的坡莫合金纳米磁铁元件制成的 kagome ASI 的场/频率相关磁动力学,结合了磁阻 (MR) 和微尺度铁磁共振 (FMR) 技术。我们的 FMR 光谱在H低于 0.3 kOe 时显示了从 0.2 GHz 到 3 GHz 的宽带吸收光谱,其中 Kagome ASI 的磁构型处于多畴状态,因为外部磁场低于获得的矫顽场H c∼ 0.3 kOe,基于低场范围 MR 回路和模拟,表明 kagome ASI 的低场磁化动力学由多模共振机制主导。然而,FMR 谱在高场准均匀磁化状态下表现出五种不同的共振模式。此外,我们的微磁模拟提供了这些共振模式的额外空间分辨率,确定了两个高频主模式的存在,分别位于 ASI 的水平和垂直条中;其他三种低频模式相互排斥,并通过边缘感应偶极场分别固定在 Kagome ASI 的角落。我们的结果表明,可以采用 ASI 结构设计作为开发低功率滤波器和磁子器件的有效方法。

更新日期:2021-05-24
down
wechat
bug