当前位置: X-MOL 学术Classical Quant. Grav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Testing the Einstein equivalence principle with two Earth-orbiting clocks
Classical and Quantum Gravity ( IF 3.6 ) Pub Date : 2021-06-03 , DOI: 10.1088/1361-6382/abf895
Dmitry Litvinov 1, 2 , Sergey Pilipenko 1
Affiliation  

We consider the problem of testing the Einstein equivalence principle (EEP) by measuring the gravitational redshift with two Earth-orbiting stable atomic clocks. For a reasonably restricted class of orbits we find an optimal experiment configuration that provides for the maximum accuracy of measuring the relevant EEP violation parameter. The perigee height of such orbits is ∼1000 km and the period is 3–5 h, depending on the clock type. For the two of the current best space-qualified clocks, the VCH-1010 hydrogen maser and the PHARAO cesium fountain clock, the achievable experiment accuracy is, respectively, 1 10−7 and 5 10−8 after 3 years of data accumulation. This is more than 2 orders of magnitude better than achieved in Gravity Probe A and GREAT missions as well as expected for the RadioAstron gravitational redshift experiment. Using an anticipated future space-qualified clock with a performance of the current laboratory optical clocks, an accuracy of 3 10−10 is reachable.



中文翻译:

用两个地球轨道时钟测试爱因斯坦等效原理

我们考虑通过使用两个绕地球轨道运行的稳定原子钟测量引力红移来测试爱因斯坦等效原理 (EEP) 的问题。对于合理受限的轨道类别,我们找到了最佳实验配置,可提供测量相关 EEP 违规参数的最大精度。这种轨道的近地点高度约为 1000 公里,周期为 3-5 小时,具体取决于时钟类型。对于目前最好的两个空间合格时钟VCH-1010氢脉泽和PHARAO铯喷泉钟,可达到的实验精度分别为1 10 -7和5 10 -8经过3年的数据积累。这比 Gravity Probe A 和 GREAT 任务以及 RadioAstron 引力红移实验所预期的要好 2 个数量级以上。使用具有当前实验室光学时钟性能的预期未来空间合格时钟,可以达到3 10 -10的精度。

更新日期:2021-06-03
down
wechat
bug