当前位置: X-MOL 学术Nonlinearity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Some properties of circle maps with zero topological entropy
Nonlinearity ( IF 1.6 ) Pub Date : 2021-05-12 , DOI: 10.1088/1361-6544/abd7c4
Yini Yang

In this paper we introduce three pairs in ‘local entropy theory’. For a dynamical system (X, f), a pair $\left\langle x,y\right\rangle \in X{\times}X$ is called an IN-pair (reps. an IT-pair) if for any neighborhoods U 1 and U 2 of x and y respectively, $\left\{{U}_{1},{U}_{2}\right\}$ has arbitrarily large finite independence sets (reps. $\left\{{U}_{1},{U}_{2}\right\}$ has an infinite independence set) where $I\subset \mathbb{N}$ is called an independence set of $\left\{{A}_{1},{A}_{2},\dots ,{A}_{k}\right\}$ if for any non-empty finite subset J of I and S ∈ {1, 2, …, k} J , ⋂ iJ f i A S(i) ≠ ∅. For a circle map or interval map (M, f), a pair ⟨x, y⟩ ∈ M M with xy is called non-separable if there exists zM such that x, yω(z, f) and ⟨x, y⟩ can not be separated. For a circle map $f:\mathbb{S}\to \mathbb{S}$ with zero topological entropy, we show that a non-diagonal pair $\langle x,y\rangle \in \mathbb{S}{\times}\mathbb{S}$ is non-separable if and only if it is an IN-pair if and only if it is an IT-pair. We introduce the maximal pattern entropy and recall that a null system is a system with zero maximal pattern entropy. We also show that if a circle map is topological null then the maximal pattern entropy of every open cover is of polynomial order.



中文翻译:

零拓扑熵圆图的一些性质

在本文中,我们介绍了“局部熵理论”中的三对。对于动力系统(X˚F),一对$\left\langle x,y\right\rangle \in X{\times}X$被称为IN -pair(代表。一个IT -pair)如果由于任何邻域ù 1ü 2Xÿ分别$\left\{{U}_{1},{U}_{2}\right\}$具有任意大的有限独立集(代表。$\left\{{U}_{1},{U}_{2}\right\}$具有无限的独立集合),其中$I\subset \mathbb{N}$被称为独立组$\left\{{A}_{1},{A}_{2},\dots ,{A}_{k}\right\}$,如果对于任何非空有限子集Ĵ小号∈{1,2,...,ķ } Ĵ,⋂ J f i A S ( i ) ≠ ∅。对于圆图或区间图 ( M , f ),如果存在zM使得x , yω ( z , f )有xy 的一对 ⟨ x , y ⟩ ∈ M M称为不可分和 ⟨ x , y ⟩ 不能分开。对于圆形地图 $f:\mathbb{S}\to \mathbb{S}$在拓扑熵为零的情况下,我们证明了一个非对角对$\langle x,y\rangle \in \mathbb{S}{\times}\mathbb{S}$是不可分的当且仅当它是一个IN对当且仅当它是一个IT对。我们介绍了最大模式熵,并记得零系统是一个最大模式熵为零的系统。我们还表明,如果圆图是拓扑空的,那么每个开盖的最大模式熵是多项式的。

更新日期:2021-05-12
down
wechat
bug