当前位置: X-MOL 学术J. Phys. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic proximity effect in two-dimensional van der Waals heterostructure
Journal of Physics: Materials ( IF 4.9 ) Pub Date : 2021-05-25 , DOI: 10.1088/2515-7639/abf884
M Bora , P Deb

The evolution of low-dimensional materials has frequently revolutionized new intriguing physical standards and suggests a unique approach to scientifically design a novel device. However, scaling down of spin-electronic devices entails in-depth knowledge and precise control on engineering interfacial structures, which unveils the exciting opportunity. To reveal exotic quantum phases, atomically thin two-dimensional van der Waals material, embraces control and tuning of various physical states by coupling with peripheral perturbation such as pressure, photon, gating, Moire pattern and proximity effect. Herein, we discuss the physical property of a pristine material which can be converted via proximity effects to attain intrinsic spin-dependent properties from its adjacent material like magnetic, topological or spin–orbit phenomena. Realizing magnetic proximity effect in atomically thin vdW heterostructure not only balance the traditional techniques of designing quality spin interface by doping, defects or surface modification, but also can overcome their restrictions for modelling and fabricate novel spin-related devices in nanoscale phases. The proximitized van der Waals heterostructure systems unveil properties, which cannot be realized in any integral component of considered heterostructure system. These proximitized van der Waals material provide an ideal platform for exploring new physical phenomena, which delivers a broader framework for employing novel materials and investigate nanoscale phases in spintronics and valleytronics.



中文翻译:

二维范德华异质结构中的磁邻近效应

低维材料的演变经常彻底改变新的有趣的物理标准,并提出了一种科学设计新型设备的独特方法。然而,自旋电子器件的缩小需要对工程界面结构的深入了解和精确控制,这揭示了令人兴奋的机会。为了揭示奇异的量子相,原子级薄的二维范德华材料,通过与压力、光子、门控、莫尔图案和邻近效应等外围扰动耦合来控制和调整各种物理状态。在这里,我们讨论了原始材料的物理特性,可以通过邻近效应将其转换为从其相邻材料获得固有的自旋相关特性,如磁性、拓扑或自旋轨道现象。在原子级薄 vdW 异质结构中实现磁性邻近效应不仅平衡了通过掺杂、缺陷或表面改性设计高质量自旋界面的传统技术,而且可以克服它们在纳米级阶段建模和制造新型自旋相关器件的限制。接近的范德瓦尔斯异质结构系统揭示了在所考虑的异质结构系统的任何整体组件中都无法实现的特性。这些接近的范德华材料为探索新的物理现象提供了一个理想的平台,为采用新材料和研究自旋电子学和谷电子学中的纳米级相提供了更广泛的框架。

更新日期:2021-05-25
down
wechat
bug