当前位置: X-MOL 学术J. Phys. G Nucl. Partic. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
IceCube-Gen2: the window to the extreme Universe
Journal of Physics G: Nuclear and Particle Physics ( IF 3.4 ) Pub Date : 2021-04-29 , DOI: 10.1088/1361-6471/abbd48
M G Aartsen , R Abbasi , M Ackermann , J Adams , J A Aguilar , M Ahlers , M Ahrens , C Alispach , P Allison , N M Amin , K Andeen , T Anderson , I Ansseau , G Anton , C Argüelles , T C Arlen , J Auffenberg , S Axani , H Bagherpour , X Bai , A Balagopal V , A Barbano , I Bartos , B Bastian , V Basu , V Baum , S Baur , R Bay , J J Beatty , K-H Becker , J Becker Tjus , S BenZvi , D Berley , E Bernardini , D Z Besson , G Binder , D Bindig , E Blaufuss , S Blot , C Bohm , M Bohmer , S Böser , O Botner , J Böttcher , E Bourbeau , J Bourbeau , F Bradascio , J Braun , S Bron , J Brostean-Kaiser , A Burgman , R T Burley , J Buscher , R S Busse , M Bustamante , M A Campana , E G Carnie-Bronca , T Carver , C Chen , P Chen , E Cheung , D Chirkin , S Choi , B A Clark , K Clark , L Classen , A Coleman , G H Collin , A Connolly , J M Conrad , P Coppin , P Correa , D F Cowen , R Cross , P Dave , C Deaconu , C De Clercq , J J DeLaunay , S De Kockere , H Dembinski , K Deoskar , S De Ridder , A Desai , P Desiati , K D de Vries , G de Wasseige , M de With , T DeYoung , S Dharani , A Diaz , J C Díaz-Vélez , H Dujmovic , M Dunkman , M A DuVernois , E Dvorak , T Ehrhardt , P Eller , R Engel , J J Evans , P A Evenson , S Fahey , K Farrag , A R Fazely , J Felde , A T Fienberg , K Filimonov , C Finley , L Fischer , D Fox , A Franckowiak , E Friedman , A Fritz , T K Gaisser , J Gallagher , E Ganster , D Garcia-Fernandez , S Garrappa , A Gartner , L Gerhard , R Gernhaeuser , A Ghadimi , C Glaser , T Glauch , T Glüsenkamp , A Goldschmidt , J G Gonzalez , S Goswami , D Grant , T Grégoire , Z Griffith , S Griswold , M Gündüz , C Haack , A Hallgren , R Halliday , L Halve , F Halzen , J C Hanson , K Hanson , J Hardin , J Haugen , A Haungs , S Hauser , D Hebecker , D Heinen , P Heix , K Helbing , R Hellauer , F Henningsen , S Hickford , J Hignight , C Hill , G C Hill , K D Hoffman , B Hoffmann , R Hoffmann , T Hoinka , B Hokanson-Fasig , K Holzapfel , K Hoshina , F Huang , M Huber , T Huber , T Huege , K Hughes , K Hultqvist , M Hünnefeld , R Hussain , S In , N Iovine , A Ishihara , M Jansson , G S Japaridze , M Jeong , B J P Jones , F Jonske , R Joppe , O Kalekin , D Kang , W Kang , X Kang , A Kappes , D Kappesser , T Karg , M Karl , A Karle , T Katori , U Katz , M Kauer , A Keivani , M Kellermann , J L Kelley , A Kheirandish , J Kim , K Kin , T Kintscher , J Kiryluk , T Kittler , M Kleifges , S R Klein , R Koirala , H Kolanoski , L Köpke , C Kopper , S Kopper , D J Koskinen , P Koundal , M Kovacevich , M Kowalski , C B Krauss , K Krings , G Krückl , N Kulacz , N Kurahashi , C Lagunas Gualda , R Lahmann , J L Lanfranchi , M J Larson , U Latif , F Lauber , J P Lazar , K Leonard , A Leszczyńska , Y Li , Q R Liu , E Lohfink , J LoSecco , C J Lozano Mariscal , L Lu , F Lucarelli , A Ludwig , J Lünemann , W Luszczak , Y Lyu , W Y Ma , J Madsen , G Maggi , K B M Mahn , Y Makino , P Mallik , S Mancina , S Mandalia , I C Mariş , S Marka , Z Marka , R Maruyama , K Mase , R Maunu , F McNally , K Meagher , A Medina , M Meier , S Meighen-Berger , J Merz , Z S Meyers , J Micallef , D Mockler , G Momenté , T Montaruli , R W Moore , R Morse , M Moulai , P Muth , R Naab , R Nagai , J Nam , U Nauman , J Necker , G Neer , A Nelles , L V Nguyễn , H Niederhausen , M U Nisa , S C Nowicki , D R Nygren , E Oberla , A Obertacke Pollmann , M Oehler , A Olivas , E O’Sullivan , Y Pan , H Pandya , D V Pankova , L Papp , N Park , G K Parker , E N Paudel , P Peiffer , C Pérez de los Heros , T C Petersen , S Philippen , D Pieloth , S Pieper , J L Pinfold , A Pizzuto , I Plaisier , M Plum , Y Popovych , A Porcelli , M Prado Rodriguez , P B Price , G T Przybylski , C Raab , A Raissi , M Rameez , L Rauch , K Rawlins , I C Rea , A Rehman , R Reimann , M Renschler , G Renzi , E Resconi , S Reusch , W Rhode , M Richman , B Riedel , M Riegel , E J Roberts , S Robertson , G Roellinghoff , M Rongen , C Rott , T Ruhe , D Ryckbosch , D Rysewyk Cantu , I Safa , S E Sanchez Herrera , A Sandrock , J Sandroos , P Sandstrom , M Santander , S Sarkar , S Sarkar , K Satalecka , M Scharf , M Schaufel , H Schieler , P Schlunder , T Schmidt , A Schneider , J Schneider , F G Schröder , L Schumacher , S Sclafani , D Seckel , S Seunarine , M H Shaevitz , A Sharma , S Shefali , M Silva , D Smith , B Smithers , R Snihur , J Soedingrekso , D Soldin , S Söldner-Rembold , M Song , D Southall , G M Spiczak , C Spiering , J Stachurska , M Stamatikos , T Stanev , R Stein , J Stettner , A Steuer , T Stezelberger , R G Stokstad , N L Strotjohann , T Stürwald , T Stuttard , G W Sullivan , I Taboada , A Taketa , H K M Tanaka , F Tenholt , S Ter-Antonyan , A Terliuk , S Tilav , K Tollefson , L Tomankova , C Tönnis , J Torres , S Toscano , D Tosi , A Trettin , M Tselengidou , C F Tung , A Turcati , R Turcotte , C F Turley , J P Twagirayezu , B Ty , E Unger , M A Unland Elorrieta , J Vandenbroucke , D van Eijk , N van Eijndhoven , D Vannerom , J van Santen , D Veberic , S Verpoest , A Vieregg , M Vraeghe , C Walck , T B Watson , C Weaver , A Weindl , L Weinstock , M J Weiss , J Weldert , C Welling , C Wendt , J Werthebach , N Whitehorn , K Wiebe , C H Wiebusch , D R Williams , S A Wissel , M Wolf , T R Wood , K Woschnagg , G Wrede , S Wren , J Wulff , X W Xu , Y Xu , J P Yanez , S Yoshida , T Yuan , Z Zhang , S Zierke , M Zöcklein

The observation of electromagnetic radiation from radio to γ-ray wavelengths has provided a wealth of information about the Universe. However, at PeV (1015 eV) energies and above, most of the Universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the Universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. These energetic particles have millions of times higher energies than those produced in the most powerful particle accelerators on Earth. As neutrinos can escape from regions otherwise opaque to radiation, they allow an unique view deep into exploding stars and the vicinity of the event horizons of black holes. The discovery of cosmic neutrinos with IceCube has opened this new window on the Universe. IceCube has been successful in finding first evidence for cosmic particle acceleration in the jet of an active galactic nucleus. Yet, ultimately, its sensitivity is too limited to detect even the brightest neutrino sources with high significance, or to detect populations of less luminous sources. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the processes and environments that govern the Universe at the highest energies. IceCube-Gen2 is designed to:

(a) Resolve the high-energy neutrino sky from TeV to EeV energies

(b) Investigate cosmic particle acceleration through multi-messenger observations

(c) Reveal the sources and propagation of the highest energy particles in the Universe

(d) Probe fundamental physics with high-energy neutrinos

IceCube-Gen2 will enhance the existing IceCube detector at the South Pole. It will increase the annual rate of observed cosmic neutrinos by a factor of ten compared to IceCube, and will be able to detect sources five times fainter than its predecessor. Furthermore, through the addition of a radio array, IceCube-Gen2 will extend the energy range by several orders of magnitude compared to IceCube. Construction will take 8 years and cost about $350M. The goal is to have IceCube-Gen2 fully operational by 2033.

IceCube-Gen2 will play an essential role in shaping the new era of multi-messenger astronomy, fundamentally advancing our knowledge of the high-energy Universe. This challenging mission can be fully addressed only through the combination of the information from the neutrino, electromagnetic, and gravitational wave emission of high-energy sources, in concert with the new survey instruments across the electromagnetic spectrum and gravitational wave detectors which will be available in the coming years.



中文翻译:

IceCube-Gen2:通往极端宇宙的窗口

对从无线电波到 γ 射线波长的电磁辐射的观测提供了大量关于宇宙的信息。然而,在 PeV (10 15eV) 能量及以上,大部分宇宙是光子无法穿透的。需要新的信使,即宇宙中微子,来探索宇宙中最极端的环境,在这些环境中,黑洞、中子星和恒星爆炸将引力能转化为非热宇宙射线。这些高能粒子的能量比地球上最强大的粒子加速器产生的能量高数百万倍。由于中微子可以从对辐射不透明的区域逃逸,因此它们可以提供深入了解爆炸恒星和黑洞事件视界附近的独特视角。冰立方对宇宙中微子的发现打开了这个关于宇宙的新窗口。IceCube 已经成功地找到了活跃星系核喷射中宇宙粒子加速的第一个证据。然而,最终,它的灵敏度太有限,甚至无法探测到最重要的中微子源,也无法探测到亮度较低的源群。在本白皮书中,我们概述了下一代仪器 IceCube-Gen2,它将加深我们对以最高能量支配宇宙的过程和环境的理解。IceCube-Gen2 旨在:

(a) 解析从 TeV 到 EeV 能量的高能中微子天空

(b) 通过多信使观测研究宇宙粒子加速

(c) 揭示宇宙中最高能量粒子的来源和传播

(d) 用高能中微子探测基础物理学

IceCube-Gen2 将增强南极现​​有的 IceCube 探测器。与 IceCube 相比,它将使观测到的宇宙中微子的年率增加 10 倍,并且能够探测到比其前身暗五倍的源。此外,通过增加无线电阵列,与 IceCube 相比,IceCube-Gen2 将能量范围扩大几个数量级。建设将耗时 8 年,耗资约 3.5 亿美元。目标是到 2033 年让 IceCube-Gen2 全面运行。

IceCube-Gen2 将在塑造多信使天文学的新时代方面发挥重要作用,从根本上推进我们对高能宇宙的了解。只有通过将来自高能源的中微子、电磁和引力波发射的信息与新的电磁频谱勘测仪器和引力波探测器相结合,才能完全解决这一具有挑战性的任务。未来几年。

更新日期:2021-04-29
down
wechat
bug