当前位置: X-MOL 学术Plasm. Sci. tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic field induction and magnetic force distribution profiles in plasma focus discharge device
Plasma Science and Technology ( IF 1.7 ) Pub Date : 2021-06-04 , DOI: 10.1088/2058-6272/ac01d2
A A LASHIN 1 , T M ALLAM 1 , H A EL-SAYED 1 , Kamal M AHMED 1 , S A WARD 2, 3 , H M SOLIMAN 1 , M A ABOUELATTA 3
Affiliation  

We report a simple-to-perform technique to investigate the distribution of the azimuthal magnetic field induction, B θ , and the induced magnetic force acting on the plasma current sheath (PCS) in a plasma focus (PF) discharge. This in situ measurement technique can undoubtedly be beneficial when other fast-imaging techniques are not available. techniques are not available. Experimental work was conducted in the low-energy Mather-type EAEA-PF1 device operated in argon. The axial distribution (B θ ) z along the coaxial electrodes system was measured with a four magnetic-probe set technique at different radial distances (r=2.625נ10−2 to 4.125נ10−2 m) within the annular space between the coaxial electrodes during the 1st and 2nd half cycles of the discharge current waveform, where inner electrode of coaxial electrode system has a +ve polarity and −ve polarity, respectively. Axial, radial and total magnetic force distribution profiles were estimated from B θ data. Investigation of PCS shape in terms of its inclination (curvature) angle, θ, along the axial rundown phase and the correlation between the magnetic forces per unit volume acting on the PCS, the inclination angle θ of the PCS, and the formation of a powerful PF action during the 1st and 2nd half cycles is carried out. Dependence of inclination angle, θ, on total magnetic force per unit volume acting on PCS axial motion was studied, separately, during the 1st and 2nd half cycles.



中文翻译:

等离子体聚焦放电装置中的磁场感应和磁力分布曲线

We report a simple-to-perform technique to investigate the distribution of the azimuthal magnetic field induction, B θ , and the induced magnetic force acting on the plasma current sheath (PCS) in a plasma focus (PF) discharge. This in situ measurement technique can undoubtedly be beneficial when other fast-imaging techniques are not available. techniques are not available. Experimental work was conducted in the low-energy Mather-type EAEA-PF1 device operated in argon. The axial distribution (B θ ) z along the coaxial electrodes system was measured with a four magnetic-probe set technique at different radial distances (r=2.625נ10−2 to 4.125נ10−2 m) within the annular space between the coaxial electrodes during the 1st and 2nd half cycles of the discharge current waveform, where inner electrode of coaxial electrode system has a +ve polarity and −ve polarity, respectively. Axial, radial and total magnetic force distribution profiles were estimated from B θ data. Investigation of PCS shape in terms of its inclination (curvature) angle, θ, along the axial rundown phase and the correlation between the magnetic forces per unit volume acting on the PCS, the inclination angle θ of the PCS, and the formation of a powerful PF action during the 1st and 2nd half cycles is carried out. Dependence of inclination angle, θ,在第 1 个和第 2 个半周期期间,分别研究了作用于 PCS 轴向运动的每单位体积的总磁力。

更新日期:2021-06-04
down
wechat
bug