当前位置: X-MOL 学术Bus. Inf. Syst. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and Classical Approaches Used for Outcome Prediction
Business & Information Systems Engineering ( IF 7.4 ) Pub Date : 2020-04-08 , DOI: 10.1007/s12599-020-00645-0
Wolfgang Kratsch , Jonas Manderscheid , Maximilian Röglinger , Johannes Seyfried

Predictive process monitoring aims at forecasting the behavior, performance, and outcomes of business processes at runtime. It helps identify problems before they occur and re-allocate resources before they are wasted. Although deep learning (DL) has yielded breakthroughs, most existing approaches build on classical machine learning (ML) techniques, particularly when it comes to outcome-oriented predictive process monitoring. This circumstance reflects a lack of understanding about which event log properties facilitate the use of DL techniques. To address this gap, the authors compared the performance of DL (i.e., simple feedforward deep neural networks and long short term memory networks) and ML techniques (i.e., random forests and support vector machines) based on five publicly available event logs. It could be observed that DL generally outperforms classical ML techniques. Moreover, three specific propositions could be inferred from further observations: First, the outperformance of DL techniques is particularly strong for logs with a high variant-to-instance ratio (i.e., many non-standard cases). Second, DL techniques perform more stably in case of imbalanced target variables, especially for logs with a high event-to-activity ratio (i.e., many loops in the control flow). Third, logs with a high activity-to-instance payload ratio (i.e., input data is predominantly generated at runtime) call for the application of long short term memory networks. Due to the purposive sampling of event logs and techniques, these findings also hold for logs outside this study.

中文翻译:

业务流程监控中的机器学习:深度学习与用于结果预测的经典方法的比较

预测性流程监控旨在预测运行时业务流程的行为、性能和结果。它有助于在问题发生之前识别问题并在资源浪费之前重新分配资源。尽管深度学习 (DL) 取得了突破,但大多数现有方法都建立在经典机器学习 (ML) 技术之上,尤其是在面向结果的预测过程监控方面。这种情况反映了对哪些事件日志属性有助于使用 DL 技术缺乏了解。为了解决这一差距,作者基于五个公开可用的事件日志比较了 DL(即简单的前馈深度神经网络和长短期记忆网络)和 ML 技术(即随机森林和支持向量机)的性能。可以观察到,DL 通常优于经典的 ML 技术。此外,可以从进一步的观察中推断出三个具体的命题:首先,对于具有高变体与实例比率的日志(即,许多非标准情况),DL 技术的性能特别强。其次,DL 技术在目标变量不平衡的情况下执行更稳定,特别是对于具有高事件与活动比率的日志(即控制流中的许多循环)。第三,具有高活动与实例有效负载比的日志(即输入数据主要在运行时生成)需要应用长短期记忆网络。由于事件日志和技术的有目的的抽样,这些发现也适用于本研究之外的日志。从进一步的观察中可以推断出三个具体的命题:首先,对于具有高变体与实例比率的日志(即,许多非标准案例),DL 技术的表现尤为突出。其次,DL 技术在目标变量不平衡的情况下执行更稳定,特别是对于具有高事件与活动比率的日志(即控制流中的许多循环)。第三,具有高活动与实例有效负载比的日志(即输入数据主要在运行时生成)需要应用长短期记忆网络。由于对事件日志和技术进行有目的的抽样,这些发现也适用于本研究之外的日志。从进一步的观察中可以推断出三个具体的命题:首先,对于具有高变体与实例比率的日志(即,许多非标准案例),DL 技术的表现尤为突出。其次,DL 技术在目标变量不平衡的情况下执行更稳定,特别是对于具有高事件与活动比率的日志(即控制流中的许多循环)。第三,具有高活动与实例有效负载比的日志(即输入数据主要在运行时生成)需要应用长短期记忆网络。由于事件日志和技术的有目的的抽样,这些发现也适用于本研究之外的日志。其次,DL 技术在目标变量不平衡的情况下执行更稳定,特别是对于具有高事件与活动比率的日志(即控制流中的许多循环)。第三,具有高活动与实例有效负载比的日志(即输入数据主要在运行时生成)需要应用长短期记忆网络。由于事件日志和技术的有目的的抽样,这些发现也适用于本研究之外的日志。其次,DL 技术在目标变量不平衡的情况下执行更稳定,特别是对于具有高事件与活动比率的日志(即控制流中的许多循环)。第三,具有高活动与实例有效负载比的日志(即输入数据主要在运行时生成)需要应用长短期记忆网络。由于事件日志和技术的有目的的抽样,这些发现也适用于本研究之外的日志。
更新日期:2020-04-08
down
wechat
bug